added instruction functionality

This commit is contained in:
zanostro 2025-11-11 21:51:15 +01:00
parent 483a16c194
commit d4754a048d
9 changed files with 754 additions and 170 deletions

View file

@ -0,0 +1,38 @@
#ifndef CONSTANTS_H
#define CONSTANTS_H
// ==============================
// SIC/XE Architecture Constants
// ==============================
// Memory and system constants
constexpr int MEMORY_SIZE = 65536;
constexpr int NUM_DEVICES = 256;
constexpr int WORD_SIZE = 24;
constexpr int WORD_MASK = 0xFFFFFF;
// SIC/XE floating point constants
constexpr int SICF_BITS = 48;
constexpr int SICF_FRAC_BITS = 40;
constexpr int SICF_EXP_BITS = 7;
constexpr int SICF_EXP_BIAS = 64;
constexpr unsigned long long SICF_FRAC_MASK = (1ULL << SICF_FRAC_BITS) - 1;
// SW register condition codes
constexpr int CC_LT = 0x0; // 00
constexpr int CC_EQ = 0x1; // 01
constexpr int CC_GT = 0x2; // 10
constexpr int CC_MASK = 0x3; // mask for 2 bits
// Instruction format bit masks
constexpr int TYPE3_4_SIC_MASK = 0xFC;
constexpr int NI_MASK = 0x03; // mask for n and i bits
constexpr int NI_SIC = 0x0;
constexpr int BP_BASE_REL_MASK = 0b10;
constexpr int BP_PC_REL_MASK = 0b01;
constexpr int BP_DIRECT_MASK = 0b00;
constexpr int BIT_E_MASK = 0x10; // mask for e bit in F4 and F3 instructions
#endif // CONSTANTS_H

View file

@ -1,11 +1,17 @@
#ifndef INSTRUCTIONS_H
#define INSTRUCTIONS_H
#include "opcode.h"
#include "utils.h"
class Machine; // forward declaration
// Type 2 instruction handlers
void addr_handler(Machine& m, int r1, int r2);
void clear_handler(Machine& m, int r, int unused);
void compr_handler(Machine& m, int r1, int r2);
void divr_handler(Machine& m, int r1, int r2);
void mulr_handler(Machine& m, int r1, int r2);
void rmo_handler(Machine& m, int r1, int r2);
@ -16,5 +22,49 @@ void svc_handler(Machine& m, int n, int unused);
void tixr_handler(Machine& m, int r1, int unused);
// Type 3/4 instruction handlers
void add_handler(Machine& m, int ea, AddressingMode mode);
void addf_handler(Machine& m, int ea, AddressingMode mode);
void and_handler(Machine& m, int ea, AddressingMode mode);
void comp_handler(Machine& m, int ea, AddressingMode mode);
void compf_handler(Machine& m, int ea, AddressingMode mode);
void div_handler(Machine& m, int ea, AddressingMode mode);
void divf_handler(Machine& m, int ea, AddressingMode mode);
void j_handler(Machine& m, int ea, AddressingMode mode);
void jeq_handler(Machine& m, int ea, AddressingMode mode);
void jgt_handler(Machine& m, int ea, AddressingMode mode);
void jlt_handler(Machine& m, int ea, AddressingMode mode);
void jsub_handler(Machine& m, int ea, AddressingMode mode);
void lda_handler(Machine& m, int ea, AddressingMode mode);
void ldb_handler(Machine& m, int ea, AddressingMode mode);
void ldch_handler(Machine& m, int ea, AddressingMode mode);
void ldf_handler(Machine& m, int ea, AddressingMode mode);
void ldl_handler(Machine& m, int ea, AddressingMode mode);
void lds_handler(Machine& m, int ea, AddressingMode mode);
void ldt_handler(Machine& m, int ea, AddressingMode mode);
void ldx_handler(Machine& m, int ea, AddressingMode mode);
void lps_handler(Machine& m, int ea, AddressingMode mode);
void mul_handler(Machine& m, int ea, AddressingMode mode);
void mulf_handler(Machine& m, int ea, AddressingMode mode);
void or_handler(Machine& m, int ea, AddressingMode mode);
void rd_handler(Machine& m, int ea, AddressingMode mode);
void rsub_handler(Machine& m, int ea, AddressingMode mode);
void ssk_handler(Machine& m, int ea, AddressingMode mode);
void sta_handler(Machine& m, int ea, AddressingMode mode);
void stb_handler(Machine& m, int ea, AddressingMode mode);
void stch_handler(Machine& m, int ea, AddressingMode mode);
void stf_handler(Machine& m, int ea, AddressingMode mode);
void sti_handler(Machine& m, int ea, AddressingMode mode);
void stl_handler(Machine& m, int ea, AddressingMode mode);
void sts_handler(Machine& m, int ea, AddressingMode mode);
void stsw_handler(Machine& m, int ea, AddressingMode mode);
void stt_handler(Machine& m, int ea, AddressingMode mode);
void stx_handler(Machine& m, int ea, AddressingMode mode);
void sub_handler(Machine& m, int ea, AddressingMode mode);
void subf_handler(Machine& m, int ea, AddressingMode mode);
void td_handler(Machine& m, int ea, AddressingMode mode);
void tix_handler(Machine& m, int ea, AddressingMode mode);
void wd_handler(Machine& m, int ea, AddressingMode mode);
#endif // INSTRUCTIONS_H

View file

@ -4,18 +4,15 @@
#include <string>
#include <iostream>
#include <vector>
#include <memory>
#include "constants.h"
#include "device.h"
#include "input_device.h"
#include "output_device.h"
#include "file_device.h"
#include "opcode.h"
#include <memory>
#define MEMORY_SIZE 65536
#define NUM_DEVICES 256
#include "utils.h"
using std::string;
using std::cerr;
@ -28,28 +25,29 @@ public:
Machine();
~Machine();
// Accessor methods for registers
int getA() const { return A; }
void setA(int value) { A = value; }
void setA(int value) { A = toSIC24(value); }
int getB() const { return B; }
void setB(int value) { B = value; }
void setB(int value) { B = toSIC24(value); }
int getX() const { return X; }
void setX(int value) { X = value; }
void setX(int value) { X = toSIC24(value); }
int getL() const { return L; }
void setL(int value) { L = value; }
void setL(int value) { L = toSIC24(value); }
int getS() const { return S; }
void setS(int value) { S = value; }
void setS(int value) { S = toSIC24(value); }
int getT() const { return T; }
void setT(int value) { T = value; }
void setT(int value) { T = toSIC24(value); }
// PC is an address → don't mask to 24 unless you want 24-bit addressing
int getPC() const { return PC; }
void setPC(int value) { PC = value; }
// status word: keep as-is
int getSW() const { return SW; }
void setSW(int value) { SW = value; }
@ -83,7 +81,7 @@ public:
bool execF1(int opcode);
bool execF2(int opcode, int operand);
bool execSICF3F4(int opcode, int ni, int operand);
bool execSICF3F4(int opcode, int ni, int x, int b, int p, int e, int operand);
// error handling methods
void notImplemented(string mnemonic);
@ -106,40 +104,6 @@ private:
Device fallbackDevice;
};
// Convert integer to 24-bit signed SIC representation
inline int toSIC24(int value) {
value &= 0xFFFFFF;
if (value & 0x800000) {
value -= 0x1000000;
}
return value;
}
inline int setCC(int sw, int cc) {
sw &= ~CC_MASK;
sw |= (cc & CC_MASK);
return sw;
}
inline int sic_comp(int a, int b, int sw) {
int sa = toSIC24(a);
int sb = toSIC24(b);
int cc;
if (sa < sb) {
cc = CC_LT;
} else if (sa == sb) {
cc = CC_EQ;
} else {
cc = CC_GT;
}
return setCC(sw, cc);
}
inline int getCC(int sw) {
return sw & CC_MASK;
}
#endif // MACHINE_H

View file

@ -1,6 +1,8 @@
#ifndef OPCODE_H
#define OPCODE_H
#include "utils.h"
// ==============================
// Opcode definitions (SIC/XE)
// ==============================
@ -65,15 +67,6 @@
#define WD 0xDC
// SW register condition codes
constexpr int CC_LT = 0x0; // 00
constexpr int CC_EQ = 0x1; // 01
constexpr int CC_GT = 0x2; // 10
constexpr int CC_MASK = 0x3; // mask for 2 bits
enum class InstructionType {
TYPE1,
TYPE2,

View file

@ -0,0 +1,80 @@
#ifndef UTILS_H
#define UTILS_H
#include "constants.h"
// ==============================
// SIC/XE Utility Functions
// ==============================
// Instruction bit extraction utilities
inline int getXBit(int b2) {
return (b2 & 0x80) ? 1 : 0;
}
inline int getBPBits(int b2) {
return (b2 >> 5) & 0x03;
}
enum class AddressingMode {
IMMEDIATE,
INDIRECT,
SIMPLE,
SIC_DIRECT,
INVALID
};
// Get addressing mode from ni bits
AddressingMode getAddressingMode(int ni);
// convert to signed 24-bit integer
inline int toSIC24(int value) {
value &= 0xFFFFFF;
if (value & 0x800000) {
value -= 0x1000000;
}
return value;
}
inline int setCC(int sw, int cc) {
sw &= ~CC_MASK;
sw |= (cc & CC_MASK);
return sw;
}
inline int sic_comp(int a, int b, int sw) {
int sa = toSIC24(a);
int sb = toSIC24(b);
int cc;
if (sa < sb) {
cc = CC_LT;
} else if (sa == sb) {
cc = CC_EQ;
} else {
cc = CC_GT;
}
return setCC(sw, cc);
}
inline int sic_comp(double a, double b, int sw) {
int cc;
if (a < b) {
cc = CC_LT;
} else if (a == b) {
cc = CC_EQ;
} else {
cc = CC_GT;
}
return setCC(sw, cc);
}
inline int getCC(int sw) {
return sw & CC_MASK;
}
#endif // UTILS_H

View file

@ -1,16 +1,81 @@
#include "instructions.h"
#include "machine.h"
#include "utils.h"
inline int resolveWordOperand(Machine& m, int ea, AddressingMode mode)
{
switch (mode)
{
case AddressingMode::IMMEDIATE: return ea;
case AddressingMode::SIMPLE:
case AddressingMode::SIC_DIRECT: return m.getWord(ea);
case AddressingMode::INDIRECT: return m.getWord(m.getWord(ea));
default: m.invalidAddressing(); return 0;
}
}
inline double resolveFloatOperand(Machine& m, int ea, AddressingMode mode)
{
switch (mode)
{
case AddressingMode::IMMEDIATE: return static_cast<double>(ea);
case AddressingMode::SIMPLE:
case AddressingMode::SIC_DIRECT: return m.getFloat(ea);
case AddressingMode::INDIRECT: return m.getFloat(m.getWord(ea));
default: m.invalidAddressing(); return 0.0;
}
}
inline void writeWordOperand(Machine& m, int ea, AddressingMode mode, int value)
{
switch (mode)
{
case AddressingMode::SIMPLE:
case AddressingMode::SIC_DIRECT: m.setWord(ea, value); break; // direct store
case AddressingMode::INDIRECT: m.setWord(m.getWord(ea), value); break; // store via pointer
default: m.invalidAddressing(); break;
}
}
inline void writeFloatOperand(Machine& m, int ea, AddressingMode mode, double value)
{
switch (mode)
{
case AddressingMode::SIMPLE:
case AddressingMode::SIC_DIRECT: m.setFloat(ea, value); break;
case AddressingMode::INDIRECT: m.setFloat(m.getWord(ea), value); break;
default: m.invalidAddressing(); break;
}
}
// For jump-like ops: what PC should become?
inline int resolveJumpTarget(Machine& m, int ea, AddressingMode mode)
{
switch (mode)
{
case AddressingMode::IMMEDIATE:
case AddressingMode::SIMPLE:
case AddressingMode::SIC_DIRECT: return ea; // jump to EA (normal case)
case AddressingMode::INDIRECT: return m.getWord(ea); // jump via pointer
default: m.invalidAddressing(); return m.getPC();
}
}
void addr_handler(Machine& m, int r1, int r2) {
m.setReg(r2, m.getReg(r1) + m.getReg(r2));
}
// CLEAR instruction: clears register r (first nibble), second nibble unused
void clear_handler(Machine& m, int r, int unused) {
m.setReg(r, 0);
}
void compr_handler(Machine &m, int r1, int r2)
{
m.setSW(sic_comp(m.getReg(r1), m.getReg(r2), m.getSW()));
}
void divr_handler(Machine& m, int r1, int r2) {
@ -31,15 +96,33 @@ void rmo_handler(Machine &m, int r1, int r2)
m.setReg(r2, m.getReg(r1));
}
// SHIFTL r1, n → left *circular* shift n bits
void shiftl_handler(Machine &m, int r1, int n)
{
m.setReg(r1, m.getReg(r1) << n);
unsigned int v = m.getReg(r1) & WORD_MASK;
n %= WORD_SIZE;
unsigned int res = ((v << n) | (v >> (WORD_SIZE - n))) & WORD_MASK;
m.setReg(r1, res);
}
// SHIFTR r1, n → right shift n bits, fill with original leftmost bit
void shiftr_handler(Machine &m, int r1, int n)
{
m.setReg(r1, m.getReg(r1) >> n);
unsigned int v = m.getReg(r1) & WORD_MASK;
n %= WORD_SIZE;
unsigned int msb = (v & 0x800000) ? 1u : 0u;
unsigned int shifted = v >> n;
unsigned int fill = 0;
if (msb) {
fill = (~0u) << (WORD_SIZE - n);
fill &= WORD_MASK;
}
unsigned int res = (shifted | fill) & WORD_MASK;
m.setReg(r1, res);
}
void subr_handler(Machine &m, int r1, int r2)
{
m.setReg(r2, m.getReg(r2) - m.getReg(r1));
@ -58,3 +141,231 @@ void tixr_handler(Machine &m, int r1, int unused)
int valR1 = m.getReg(r1);
m.setSW(sic_comp(valX, valR1, m.getSW()));
}
void add_handler(Machine &m, int ea, AddressingMode mode)
{
int val = resolveWordOperand(m, ea, mode);
m.setA(m.getA() + val);
}
void addf_handler(Machine &m, int ea, AddressingMode mode)
{
double val = resolveFloatOperand(m, ea, mode);
m.setA(m.getA() + val);
}
void and_handler(Machine &m, int ea, AddressingMode mode)
{
int val = resolveWordOperand(m, ea, mode);
m.setA(m.getA() & val);
}
void comp_handler(Machine &m, int ea, AddressingMode mode)
{
int operand = resolveWordOperand(m, ea, mode);
m.setSW(sic_comp(m.getA(), operand, m.getSW()));
}
void compf_handler(Machine &m, int ea, AddressingMode mode)
{
double operand = resolveFloatOperand(m, ea, mode);
m.setSW(sic_comp(m.getF(), operand, m.getSW()));
}
void div_handler(Machine &m, int ea, AddressingMode mode)
{
int divisor = resolveWordOperand(m, ea, mode);
if (divisor == 0) {
m.divisionByZero(DIV);
return;
}
m.setA(m.getA() / divisor);
}
void divf_handler(Machine &m, int ea, AddressingMode mode)
{
double divisor = resolveFloatOperand(m, ea, mode);
if (divisor == 0.0) {
m.divisionByZero(DIVF);
return;
}
m.setF(m.getF() / divisor);
}
void j_handler(Machine &m, int ea, AddressingMode mode)
{
int target = resolveJumpTarget(m, ea, mode);
m.setPC(target);
}
void jeq_handler(Machine &m, int ea, AddressingMode mode)
{
int sw = m.getSW();
int cc = getCC(sw);
if (cc == CC_EQ) {
int target = resolveJumpTarget(m, ea, mode);
m.setPC(target);
}
}
void jgt_handler(Machine &m, int ea, AddressingMode mode)
{
int sw = m.getSW();
int cc = getCC(sw);
if (cc == CC_GT) {
int target = resolveJumpTarget(m, ea, mode);
m.setPC(target);
}
}
void jlt_handler(Machine &m, int ea, AddressingMode mode)
{
int sw = m.getSW();
int cc = getCC(sw);
if (cc == CC_LT) {
int target = resolveJumpTarget(m, ea, mode);
m.setPC(target);
}
}
void jsub_handler(Machine &m, int ea, AddressingMode mode)
{
int target = resolveJumpTarget(m, ea, mode);
m.setL(m.getPC());
m.setPC(target);
}
void lda_handler(Machine& m, int ea, AddressingMode mode)
{
m.setA(resolveWordOperand(m, ea, mode));
}
void ldb_handler(Machine &m, int ea, AddressingMode mode)
{
m.setB(resolveWordOperand(m, ea, mode));
}
void ldch_handler(Machine &m, int ea, AddressingMode mode)
{
int val = resolveWordOperand(m, ea, mode);
m.setA((m.getA() & 0xFFFF00) | (val & 0xFF));
}
void ldf_handler(Machine &m, int ea, AddressingMode mode)
{
m.setF(resolveFloatOperand(m, ea, mode));
}
void ldl_handler(Machine &m, int ea, AddressingMode mode)
{
m.setL(resolveWordOperand(m, ea, mode));
}
void lds_handler(Machine &m, int ea, AddressingMode mode)
{
m.setS(resolveWordOperand(m, ea, mode));
}
void ldt_handler(Machine &m, int ea, AddressingMode mode)
{
m.setT(resolveWordOperand(m, ea, mode));
}
void ldx_handler(Machine &m, int ea, AddressingMode mode)
{
m.setX(resolveWordOperand(m, ea, mode));
}
void mul_handler(Machine &m, int ea, AddressingMode mode)
{
int val = resolveWordOperand(m, ea, mode);
m.setA(m.getA() * val);
}
void mulf_handler(Machine &m, int ea, AddressingMode mode)
{
m.setF(m.getF() * resolveFloatOperand(m, ea, mode));
}
void or_handler(Machine &m, int ea, AddressingMode mode)
{
int val = resolveWordOperand(m, ea, mode);
m.setA(m.getA() | val);
}
void rsub_handler(Machine &m, int ea, AddressingMode mode)
{
m.setPC(m.getL());
}
void sta_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getA());
}
void stb_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getB());
}
// Rightmost byte of A register is stored
void stch_handler(Machine &m, int ea, AddressingMode mode)
{
int val = m.getA() & 0xFF;
switch (mode)
{
case AddressingMode::SIMPLE:
case AddressingMode::SIC_DIRECT: m.setByte(ea, val); break; // direct store
case AddressingMode::INDIRECT: m.setByte(m.getWord(ea), val); break; // store via pointer
default: m.invalidAddressing(); break;
}
}
void stf_handler(Machine &m, int ea, AddressingMode mode)
{
writeFloatOperand(m, ea, mode, m.getF());
}
void stl_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getL());
}
void sts_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getS());
}
void stsw_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getSW());
}
void stt_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getT());
}
void stx_handler(Machine &m, int ea, AddressingMode mode)
{
writeWordOperand(m, ea, mode, m.getX());
}
void sub_handler(Machine &m, int ea, AddressingMode mode)
{
int val = resolveWordOperand(m, ea, mode);
m.setA(m.getA() - val);
}
void subf_handler(Machine &m, int ea, AddressingMode mode)
{
double val = resolveFloatOperand(m, ea, mode);
m.setF(m.getF() - val);
}
void tix_handler(Machine &m, int ea, AddressingMode mode)
{
m.setX(m.getX() + 1);
int valX = m.getX();
int memVal = resolveWordOperand(m, ea, mode);
m.setSW(sic_comp(valX, memVal, m.getSW()));
}

View file

@ -4,6 +4,7 @@
#include "opcode.h"
#include "instructions.h"
#include <cmath>
using std::make_shared;
@ -128,23 +129,93 @@ void Machine::setWord(int address, int value)
cerr << prefix << "Invalid memory address: " << address << endl;
return;
}
value &= 0xFFFFFF;
memory[address] = static_cast<unsigned char>(value & 0xFF);
memory[address + 1] = static_cast<unsigned char>((value >> 8) & 0xFF);
memory[address + 2] = static_cast<unsigned char>((value >> 16) & 0xFF);
}
// TODO: implement proper float storage and retrieval
double Machine::getFloat(int address)
{
return 0.0;
if (address < 0 || address + 5 >= MEMORY_SIZE) {
cerr << prefix << "Invalid float address: " << address << endl;
return 0.0;
}
// load 6 bytes, little-endian → 48-bit word
unsigned long long raw =
(unsigned long long)memory[address] |
((unsigned long long)memory[address+1] << 8) |
((unsigned long long)memory[address+2] << 16) |
((unsigned long long)memory[address+3] << 24) |
((unsigned long long)memory[address+4] << 32) |
((unsigned long long)memory[address+5] << 40);
int sign = (raw >> 47) & 0x1;
int exponent = (raw >> 40) & 0x7F;
unsigned long long frac = raw & SICF_FRAC_MASK; // 40 bits
if (raw == 0) return 0.0;
// value = (1 + frac/2^40) * 2^(exp - 64)
double mant = 1.0 + (double)frac / (double)(1ULL << SICF_FRAC_BITS);
int e = exponent - SICF_EXP_BIAS;
double val = std::ldexp(mant, e); // ldexp is fast enough here
return sign ? -val : val;
}
void Machine::setFloat(int address, double value)
{
// TODO: implement proper float storage
if (address < 0 || address + 5 >= MEMORY_SIZE) {
cerr << prefix << "Invalid float address: " << address << endl;
return;
}
if (value == 0.0) {
memory[address] = 0;
memory[address+1] = 0;
memory[address+2] = 0;
memory[address+3] = 0;
memory[address+4] = 0;
memory[address+5] = 0;
return;
}
int sign = value < 0;
double x = sign ? -value : value;
// normalize x to [1, 2)
int exp2 = 0;
x = std::frexp(x, &exp2);
x *= 2.0;
exp2 -= 1;
int exp_field = exp2 + SICF_EXP_BIAS;
if (exp_field < 0) exp_field = 0;
if (exp_field > 127) exp_field = 127;
// mantissa = (x - 1) * 2^40
double frac_d = (x - 1.0) * (double)(1ULL << SICF_FRAC_BITS);
unsigned long long frac = (unsigned long long)(frac_d + 0.5); // round
frac &= SICF_FRAC_MASK;
unsigned long long raw =
((unsigned long long)sign << 47) |
((unsigned long long)exp_field << 40) |
frac;
// store 6 bytes little-endian
memory[address] = (unsigned char)( raw & 0xFF);
memory[address+1] = (unsigned char)((raw >> 8) & 0xFF);
memory[address+2] = (unsigned char)((raw >> 16) & 0xFF);
memory[address+3] = (unsigned char)((raw >> 24) & 0xFF);
memory[address+4] = (unsigned char)((raw >> 32) & 0xFF);
memory[address+5] = (unsigned char)((raw >> 40) & 0xFF);
}
Device &Machine::getDevice(int num)
{
if(num < 0 || num >= static_cast<int>(devices.size()) || !devices[num]) {
@ -195,49 +266,48 @@ int Machine::fetch()
return getByte(PC++);
}
void Machine::execute()
{
int opcode = fetch();
InstructionType type = instructions[opcode].type;
switch (type) {
case InstructionType::TYPE1: execF1(opcode);break;
case InstructionType::TYPE2: execF2(opcode, fetch());break;
case InstructionType::TYPE3_4: // extract n and i bits
{
int ni = opcode & 0x3;
int operand = fetch();
execSICF3F4(opcode, ni, operand);
}
break;
default: invalidOpcode(opcode); break;
void Machine::execute() {
int b1 = fetch();
InstructionInfo &info = instructions[b1];
if (info.type == InstructionType::TYPE1) { execF1(b1); return; }
if (info.type == InstructionType::TYPE2) { execF2(b1, fetch()); return; }
int opcode = b1 & TYPE3_4_SIC_MASK;
InstructionInfo &info34 = instructions[opcode];
int ni = b1 & NI_MASK;
if (info34.type == InstructionType::TYPE3_4) {
int b2 = fetch(), b3 = fetch();
int x = (b2 & 0x80) ? 1 : 0;
int b = (b2 & 0x40) ? 1 : 0;
int p = (b2 & 0x20) ? 1 : 0;
int e = (b2 & 0x10) ? 1 : 0;
int operand;
if (ni == NI_SIC) {
// PURE SIC
operand = ((b2 & 0x7F) << 8) | b3;
} else {
// SIC/XE
operand = e
? (((b2 & 0x0F) << 16) | (b3 << 8) | fetch()) // F4: 20-bit
: (((b2 & 0x0F) << 8) | b3); // F3: 12-bit
}
execSICF3F4(opcode, ni, x, b, p, e, operand);
return;
}
invalidOpcode(b1);
}
bool Machine::execF1(int opcode)
{
switch (opcode)
{
case FIX:
setA(static_cast<int>(getF()));
return true;
case FLOAT:
setF(static_cast<double>(getA()));
return true;
case HIO:
notImplemented("HIO");
return true;
case NORM:
notImplemented("NORM");
return true;
case SIO:
notImplemented("SIO");
return true;
case TIO:
notImplemented("TIO");
return true;
default:
break;
}
undefinedHandler(opcode);
return false;
}
@ -255,7 +325,47 @@ bool Machine::execF2(int opcode, int operand)
return false;
}
bool Machine::execSICF3F4(int opcode, int ni, int operand)
bool Machine::execSICF3F4(int opcode, int ni, int x, int b, int p, int e, int operand)
{
int ea_part = operand;
int base = 0;
AddressingMode mode = getAddressingMode(ni);
// --- PURE SIC ---
if (mode == AddressingMode::SIC_DIRECT) {
int ea = ea_part + (x ? getX() : 0);
if (instructions[opcode].handler) {
auto h = reinterpret_cast<void(*)(Machine&, int, AddressingMode)>(instructions[opcode].handler);
h(*this, ea, mode);
return true;
}
undefinedHandler(opcode);
return false;
}
// --- SIC/XE EA calc ---
if (!e) { // format 3
if (b && !p) {
base = getB(); // base-relative, unsigned 12-bit
} else if (p && !b) {
// PC-relative, signed 12-bit
if (ea_part & 0x800) // bit 11 set?
ea_part |= 0xFFFFF000; // sign-extend
base = getPC();
}
}
// format 4 (e=1): b/p ignored, ea_part is 20-bit absolute
int ea = base + ea_part + (x ? getX() : 0);
if (instructions[opcode].handler) {
auto h = reinterpret_cast<void(*)(Machine&, int, AddressingMode)>(instructions[opcode].handler);
h(*this, ea, mode);
return true;
}
undefinedHandler(opcode);
return false;
}

View file

@ -13,15 +13,41 @@ int main()
Machine machine;
cout << "Machine initialized successfully." << endl;
// COMPUTE A + B and store result in B
// Test 1: ADD immediate 0x0030 (ADD #48)
machine.setA(10);
machine.setB(20);
machine.setByte(0, ADDR);
machine.setByte(1, 0x03); // r1 = 0 (A), r2 = 3 (B)
cout << "Before ADDR: A = " << machine.getA() << ", B = " << machine.getB() << endl;
cout << "Test 1 - Immediate ADD:" << endl;
cout << " A before: " << machine.getA() << endl;
machine.setByte(0x0, 0x19); // ADD with ni=01 (immediate addressing)
machine.setByte(0x1, 0x00);
machine.setByte(0x2, 0x30); // Immediate value 48 (0x30)
machine.execute();
cout << "After ADDR: A = " << machine.getA() << ", B = " << machine.getB() << endl;
cout << " A after ADD #48: " << machine.getA() << endl;
// Test 2: ADD direct 0x0020 (ADD 0x20)
machine.setA(5);
machine.setPC(0x10); // Move PC for next instruction
cout << "\nTest 2 - Direct ADD:" << endl;
cout << " A before: " << machine.getA() << endl;
machine.setByte(0x20, 25); // Store value 25 at address 0x20
machine.setByte(0x10, 0x1B); // ADD with ni=11 (simple/direct addressing)
machine.setByte(0x11, 0x00);
machine.setByte(0x12, 0x20); // Address 0x20
machine.execute();
cout << " A after ADD [0x20]: " << machine.getA() << endl;
// Test 3: ADD indirect @0x0030 (ADD @0x30)
machine.setA(15);
machine.setPC(0x20); // Move PC for next instruction
cout << "\nTest 3 - Indirect ADD:" << endl;
cout << " A before: " << machine.getA() << endl;
machine.setWord(0x30, 0x40); // Address 0x30 contains address 0x40
machine.setByte(0x40, 35); // Store value 35 at address 0x40
machine.setByte(0x20, 0x1A); // ADD with ni=10 (indirect addressing)
machine.setByte(0x21, 0x00);
machine.setByte(0x22, 0x30); // Address 0x30 (which points to 0x40)
machine.execute();
cout << " A after ADD @0x30: " << machine.getA() << endl;
return 0;
}

View file

@ -1,70 +1,71 @@
#include "opcode.h"
#include "instructions.h"
#include "utils.h"
#include <utility>
InstructionInfo instructions[0xff];
void loadInstructionSet()
{
instructions[ADD] = {"ADD", InstructionType::TYPE3_4, nullptr};
instructions[ADDF] = {"ADDF", InstructionType::TYPE3_4, nullptr};
instructions[ADDR] = {"ADDR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(addr_handler)};
instructions[AND] = {"AND", InstructionType::TYPE3_4, nullptr};
instructions[CLEAR] = {"CLEAR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(clear_handler)};
instructions[COMP] = {"COMP", InstructionType::TYPE3_4, nullptr};
instructions[COMPF] = {"COMPF", InstructionType::TYPE3_4, nullptr};
instructions[COMPR] = {"COMPR", InstructionType::TYPE2, nullptr};
instructions[DIV] = {"DIV", InstructionType::TYPE3_4, nullptr};
instructions[DIVF] = {"DIVF", InstructionType::TYPE3_4, nullptr};
instructions[DIVR] = {"DIVR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(divr_handler)};
instructions[FIX] = {"FIX", InstructionType::TYPE1, nullptr};
instructions[FLOAT] = {"FLOAT", InstructionType::TYPE1, nullptr};
instructions[HIO] = {"HIO", InstructionType::TYPE1, nullptr};
instructions[J] = {"J", InstructionType::TYPE3_4, nullptr};
instructions[JEQ] = {"JEQ", InstructionType::TYPE3_4, nullptr};
instructions[JGT] = {"JGT", InstructionType::TYPE3_4, nullptr};
instructions[JLT] = {"JLT", InstructionType::TYPE3_4, nullptr};
instructions[JSUB] = {"JSUB", InstructionType::TYPE3_4, nullptr};
instructions[LDA] = {"LDA", InstructionType::TYPE3_4, nullptr};
instructions[LDB] = {"LDB", InstructionType::TYPE3_4, nullptr};
instructions[LDCH] = {"LDCH", InstructionType::TYPE3_4, nullptr};
instructions[LDF] = {"LDF", InstructionType::TYPE3_4, nullptr};
instructions[LDL] = {"LDL", InstructionType::TYPE3_4, nullptr};
instructions[LDS] = {"LDS", InstructionType::TYPE3_4, nullptr};
instructions[LDT] = {"LDT", InstructionType::TYPE3_4, nullptr};
instructions[LDX] = {"LDX", InstructionType::TYPE3_4, nullptr};
instructions[LPS] = {"LPS", InstructionType::TYPE3_4, nullptr};
instructions[MUL] = {"MUL", InstructionType::TYPE3_4, nullptr};
instructions[MULF] = {"MULF", InstructionType::TYPE3_4, nullptr};
instructions[MULR] = {"MULR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(mulr_handler)};
instructions[NORM] = {"NORM", InstructionType::TYPE1, nullptr};
instructions[OR] = {"OR", InstructionType::TYPE3_4, nullptr};
instructions[RD] = {"RD", InstructionType::TYPE3_4, nullptr};
instructions[RMO] = {"RMO", InstructionType::TYPE2, reinterpret_cast<RawHandler>(rmo_handler)};
instructions[RSUB] = {"RSUB", InstructionType::TYPE3_4, nullptr};
instructions[SHIFTL] = {"SHIFTL", InstructionType::TYPE2, reinterpret_cast<RawHandler>(shiftl_handler)};
instructions[SHIFTR] = {"SHIFTR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(shiftr_handler)};
instructions[SIO] = {"SIO", InstructionType::TYPE1, nullptr};
instructions[SSK] = {"SSK", InstructionType::TYPE3_4, nullptr};
instructions[STA] = {"STA", InstructionType::TYPE3_4, nullptr};
instructions[STB] = {"STB", InstructionType::TYPE3_4, nullptr};
instructions[STCH] = {"STCH", InstructionType::TYPE3_4, nullptr};
instructions[STF] = {"STF", InstructionType::TYPE3_4, nullptr};
instructions[STI] = {"STI", InstructionType::TYPE3_4, nullptr};
instructions[STL] = {"STL", InstructionType::TYPE3_4, nullptr};
instructions[STS] = {"STS", InstructionType::TYPE3_4, nullptr};
instructions[STSW] = {"STSW", InstructionType::TYPE3_4, nullptr};
instructions[STT] = {"STT", InstructionType::TYPE3_4, nullptr};
instructions[STX] = {"STX", InstructionType::TYPE3_4, nullptr};
instructions[SUB] = {"SUB", InstructionType::TYPE3_4, nullptr};
instructions[SUBF] = {"SUBF", InstructionType::TYPE3_4, nullptr};
instructions[SUBR] = {"SUBR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(subr_handler)};
instructions[SVC] = {"SVC", InstructionType::TYPE2, reinterpret_cast<RawHandler>(svc_handler)};
instructions[TIXR] = {"TIXR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(tixr_handler)};
instructions[TD] = {"TD", InstructionType::TYPE3_4, nullptr};
instructions[TIX] = {"TIX", InstructionType::TYPE3_4, nullptr};
instructions[TIO] = {"TIO", InstructionType::TYPE1, nullptr};
instructions[WD] = {"WD", InstructionType::TYPE3_4, nullptr};
instructions[ADD] = {"ADD", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(add_handler)};
instructions[ADDF] = {"ADDF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(addf_handler)};
instructions[ADDR] = {"ADDR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(addr_handler)};
instructions[AND] = {"AND", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(and_handler)};
instructions[CLEAR] = {"CLEAR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(clear_handler)};
instructions[COMP] = {"COMP", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(comp_handler)};
instructions[COMPF] = {"COMPF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(compf_handler)};
instructions[COMPR] = {"COMPR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(compr_handler)};
instructions[DIV] = {"DIV", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(div_handler)};
instructions[DIVF] = {"DIVF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(divf_handler)};
instructions[DIVR] = {"DIVR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(divr_handler)};
instructions[FIX] = {"FIX", InstructionType::TYPE1, nullptr};
instructions[FLOAT] = {"FLOAT", InstructionType::TYPE1, nullptr};
instructions[HIO] = {"HIO", InstructionType::TYPE1, nullptr};
instructions[J] = {"J", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(j_handler)};
instructions[JEQ] = {"JEQ", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(jeq_handler)};
instructions[JGT] = {"JGT", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(jgt_handler)};
instructions[JLT] = {"JLT", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(jlt_handler)};
instructions[JSUB] = {"JSUB", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(jsub_handler)};
instructions[LDA] = {"LDA", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(lda_handler)};
instructions[LDB] = {"LDB", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(ldb_handler)};
instructions[LDCH] = {"LDCH", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(ldch_handler)};
instructions[LDF] = {"LDF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(ldf_handler)};
instructions[LDL] = {"LDL", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(ldl_handler)};
instructions[LDS] = {"LDS", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(lds_handler)};
instructions[LDT] = {"LDT", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(ldt_handler)};
instructions[LDX] = {"LDX", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(ldx_handler)};
instructions[LPS] = {"LPS", InstructionType::TYPE3_4, nullptr};
instructions[MUL] = {"MUL", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(mul_handler)};
instructions[MULF] = {"MULF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(mulf_handler)};
instructions[MULR] = {"MULR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(mulr_handler)};
instructions[NORM] = {"NORM", InstructionType::TYPE1, nullptr};
instructions[OR] = {"OR", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(or_handler)};
instructions[RD] = {"RD", InstructionType::TYPE3_4, nullptr};
instructions[RMO] = {"RMO", InstructionType::TYPE2, reinterpret_cast<RawHandler>(rmo_handler)};
instructions[RSUB] = {"RSUB", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(rsub_handler)};
instructions[SHIFTL] = {"SHIFTL", InstructionType::TYPE2, reinterpret_cast<RawHandler>(shiftl_handler)};
instructions[SHIFTR] = {"SHIFTR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(shiftr_handler)};
instructions[SIO] = {"SIO", InstructionType::TYPE1, nullptr};
instructions[SSK] = {"SSK", InstructionType::TYPE3_4, nullptr};
instructions[STA] = {"STA", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(sta_handler)};
instructions[STB] = {"STB", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stb_handler)};
instructions[STCH] = {"STCH", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stch_handler)};
instructions[STF] = {"STF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stf_handler)};
instructions[STI] = {"STI", InstructionType::TYPE3_4, nullptr};
instructions[STL] = {"STL", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stl_handler)};
instructions[STS] = {"STS", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(sts_handler)};
instructions[STSW] = {"STSW", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stsw_handler)};
instructions[STT] = {"STT", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stt_handler)};
instructions[STX] = {"STX", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(stx_handler)};
instructions[SUB] = {"SUB", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(sub_handler)};
instructions[SUBF] = {"SUBF", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(subf_handler)};
instructions[SUBR] = {"SUBR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(subr_handler)};
instructions[SVC] = {"SVC", InstructionType::TYPE2, reinterpret_cast<RawHandler>(svc_handler)};
instructions[TIXR] = {"TIXR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(tixr_handler)};
instructions[TD] = {"TD", InstructionType::TYPE3_4, nullptr};
instructions[TIX] = {"TIX", InstructionType::TYPE3_4, reinterpret_cast<RawHandler>(tix_handler)};
instructions[TIO] = {"TIO", InstructionType::TYPE1, nullptr};
instructions[WD] = {"WD", InstructionType::TYPE3_4, nullptr};
// Mark uninitialized opcodes as INVALID
for (int i = 0; i < 0xff; ++i) {
@ -72,4 +73,15 @@ void loadInstructionSet()
instructions[i] = {"INVALID", InstructionType::INVALID, nullptr};
}
}
}
}
AddressingMode getAddressingMode(int ni)
{
switch (ni) {
case 0x0: return AddressingMode::SIC_DIRECT;
case 0x1: return AddressingMode::IMMEDIATE;
case 0x2: return AddressingMode::INDIRECT;
case 0x3: return AddressingMode::SIMPLE;
default: return AddressingMode::INVALID; // Should not happen
}
}