created sicxe emulator project

This commit is contained in:
zanostro 2025-11-11 11:03:25 +01:00
parent cb38efe586
commit 3332b2971b
18 changed files with 1051 additions and 0 deletions

95
simulator_SIC_XE/.gitignore vendored Normal file
View file

@ -0,0 +1,95 @@
# Build directories
build/
target/
# CMake generated files
CMakeCache.txt
CMakeFiles/
CMakeScripts/
cmake_install.cmake
Makefile
*.cmake
!CMakeLists.txt
# Compiled Object files
*.o
*.obj
# Precompiled Headers
*.gch
*.pch
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
# Fortran module files
*.mod
*.smod
# Compiled Static libraries
*.lai
*.la
*.a
*.lib
# Executables
*.exe
*.out
*.app
# Debug files
*.dSYM/
*.su
*.idb
*.pdb
# VS Code
.vscode/
*.code-workspace
# CLion
.idea/
cmake-build-*/
# Xcode
*.pbxuser
*.mode1v3
*.mode2v3
*.perspectivev3
*.xcuserstate
project.xcworkspace/
xcuserdata/
# Qt Creator
*.pro.user
*.pro.user.*
*.qbs.user
*.qbs.user.*
*.moc
*.moc.cpp
*.qm
*.prl
# OS generated files
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db
# Temporary files
*~
*.swp
*.swo
*.tmp
*.bak
# Log files
*.log
# Core dumps
core

View file

@ -0,0 +1,45 @@
cmake_minimum_required(VERSION 3.10)
project(simulator_SIC_XE VERSION 1.0 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Put all build outputs under target/bin as requested
set(OUTPUT_DIR ${CMAKE_SOURCE_DIR}/target/bin)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OUTPUT_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OUTPUT_DIR})
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${OUTPUT_DIR})
# Collect all .cpp sources under src/
file(GLOB_RECURSE SOURCES "${PROJECT_SOURCE_DIR}/src/*.cpp")
if(NOT SOURCES)
message(WARNING "No source files found in ${PROJECT_SOURCE_DIR}/src — the build will create an empty library")
endif()
# Build a static library from all sources
add_library(simulator_lib STATIC ${SOURCES})
target_include_directories(simulator_lib PUBLIC ${PROJECT_SOURCE_DIR}/include)
set_target_properties(simulator_lib PROPERTIES OUTPUT_NAME "simulator")
# If a main.cpp exists, create an executable that links the library.
if(EXISTS "${PROJECT_SOURCE_DIR}/src/main.cpp")
add_executable(simulator_exec "${PROJECT_SOURCE_DIR}/src/main.cpp")
target_link_libraries(simulator_exec PRIVATE simulator_lib)
endif()
# Convenience target: `cmake --build build --target run`
# This target will build `simulator_exec` (if present) and then execute it.
if(TARGET simulator_exec)
add_custom_target(run
DEPENDS simulator_exec
COMMAND ${CMAKE_COMMAND} -E echo "Running simulator_exec..."
COMMAND $<TARGET_FILE:simulator_exec>
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
COMMENT "Builds and runs simulator_exec"
)
endif()
message(STATUS "Project: ${PROJECT_NAME}")
message(STATUS "Sources found: ${SOURCES}")
message(STATUS "Output directory: ${OUTPUT_DIR}")

View file

@ -0,0 +1,52 @@
# SIC/XE Simulator
A complete SIC/XE architecture simulator with instruction execution, device I/O, and memory management.
## Quick Start
The easiest way to build and run the simulator:
```bash
make run
```
This single command will:
- Configure the build system (if needed)
- Compile all source files
- Link the executable
- Run the simulator
## Build Commands
| Command | Description |
|---------|-------------|
| `make` | Build the project |
| `make run` | Build and run the simulator |
| `make clean` | Clean build artifacts |
## Project Structure
```
simulator_SIC_XE/
├── include/ # Header files (.h)
├── src/ # Source files (.cpp)
├── target/bin/ # Build output (executables, libraries)
└── build/ # CMake build directory
```
## Features
- **SIC/XE Architecture**: Complete register set (A, X, L, B, S, T, F, PC, SW)
- **Instruction Execution**: Format 1, 2, and 3/4 instruction support
- **Device I/O**: Input, output, and file device management
- **Memory Management**: 24-bit address space with proper bounds checking
## Development
The project uses CMake with a convenient Makefile wrapper. All build artifacts are placed in `target/bin/` for easy access.
For manual CMake usage:
```bash
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build -j
```

View file

@ -0,0 +1,16 @@
#ifndef DEVICE_H
#define DEVICE_H
class Device {
public:
Device();
bool test();
virtual unsigned char read();
virtual void write(unsigned char value);
};
#endif // DEVICE_H

View file

@ -0,0 +1,19 @@
#ifndef FILE_DEVICE_H
#define FILE_DEVICE_H
#include "device.h"
#include <fstream>
#include <string>
class FileDevice : public Device {
public:
explicit FileDevice(const std::string &filename);
~FileDevice();
unsigned char read() override;
void write(unsigned char value) override;
private:
std::fstream fileStream;
};
#endif // FILE_DEVICE_H

View file

@ -0,0 +1,18 @@
#ifndef INPUT_DEVICE_H
#define INPUT_DEVICE_H
#include "device.h"
#include <istream>
class InputDevice : public Device {
public:
explicit InputDevice(std::istream &in);
~InputDevice();
unsigned char read();
private:
std::istream &inStream;
};
#endif // INPUT_DEVICE_H

View file

@ -0,0 +1,20 @@
#ifndef INSTRUCTIONS_H
#define INSTRUCTIONS_H
#include "opcode.h"
// Type 2 instruction handlers
void addr_handler(Machine& m, int r1, int r2);
void clear_handler(Machine& m, int r, int unused);
void divr_handler(Machine& m, int r1, int r2);
void mulr_handler(Machine& m, int r1, int r2);
void rmo_handler(Machine& m, int r1, int r2);
void shiftl_handler(Machine& m, int r1, int n);
void shiftr_handler(Machine& m, int r1, int n);
void subr_handler(Machine& m, int r1, int r2);
void svc_handler(Machine& m, int n, int unused);
void tixr_handler(Machine& m, int r1, int unused);
#endif // INSTRUCTIONS_H

View file

@ -0,0 +1,145 @@
#ifndef MACHINE_H
#define MACHINE_H
#include <string>
#include <iostream>
#include <vector>
#include "device.h"
#include "input_device.h"
#include "output_device.h"
#include "file_device.h"
#include "opcode.h"
#include <memory>
#define MEMORY_SIZE 65536
#define NUM_DEVICES 256
using std::string;
using std::cerr;
using std::endl;
using std::cout;
class Machine {
public:
Machine();
~Machine();
// Accessor methods for registers
int getA() const { return A; }
void setA(int value) { A = value; }
int getB() const { return B; }
void setB(int value) { B = value; }
int getX() const { return X; }
void setX(int value) { X = value; }
int getL() const { return L; }
void setL(int value) { L = value; }
int getS() const { return S; }
void setS(int value) { S = value; }
int getT() const { return T; }
void setT(int value) { T = value; }
int getPC() const { return PC; }
void setPC(int value) { PC = value; }
int getSW() const { return SW; }
void setSW(int value) { SW = value; }
double getF() const { return F; }
void setF(double value) { F = value; }
int getReg(int regNum) const;
void setReg(int regNum, int value);
// Memory access methods
int getByte(int address);
void setByte(int address, int value);
int getWord(int address);
void setWord(int address, int value);
double getFloat(int address);
void setFloat(int address, double value);
// Device access methods
Device& getDevice(int num);
void setDevice(int num, std::shared_ptr<Device> device);
// Set a file device at index `num` using the provided filename.
void setFileDevice(int num, const std::string &filename);
// Fetch and execute instructions
int fetch();
void execute();
bool execF1(int opcode);
bool execF2(int opcode, int operand);
bool execSICF3F4(int opcode, int ni, int operand);
// error handling methods
void notImplemented(string mnemonic);
void invalidOpcode(int opcode);
void invalidAddressing();
void divisionByZero(int opcode);
void undefinedHandler(int opcode);
private:
// registers
int A, B, X, L, S, T, PC, SW;
double F;
// memory
unsigned char memory[MEMORY_SIZE];
// devices
std::vector<std::shared_ptr<Device>> devices;
// fallback device returned when device slot is empty/invalid
Device fallbackDevice;
};
// Convert integer to 24-bit signed SIC representation
inline int toSIC24(int value) {
value &= 0xFFFFFF;
if (value & 0x800000) {
value -= 0x1000000;
}
return value;
}
inline int setCC(int sw, int cc) {
sw &= ~CC_MASK;
sw |= (cc & CC_MASK);
return sw;
}
inline int sic_comp(int a, int b, int sw) {
int sa = toSIC24(a);
int sb = toSIC24(b);
int cc;
if (sa < sb) {
cc = CC_LT;
} else if (sa == sb) {
cc = CC_EQ;
} else {
cc = CC_GT;
}
return setCC(sw, cc);
}
inline int getCC(int sw) {
return sw & CC_MASK;
}
#endif // MACHINE_H

View file

@ -0,0 +1,100 @@
#ifndef OPCODE_H
#define OPCODE_H
// ==============================
// Opcode definitions (SIC/XE)
// ==============================
#define ADD 0x18
#define ADDF 0x58
#define ADDR 0x90
#define AND 0x40
#define CLEAR 0xB4
#define COMP 0x28
#define COMPF 0x88
#define COMPR 0xA0
#define DIV 0x24
#define DIVF 0x64
#define DIVR 0x9C
#define FIX 0xC4
#define FLOAT 0xC0
#define HIO 0xF4
#define J 0x3C
#define JEQ 0x30
#define JGT 0x34
#define JLT 0x38
#define JSUB 0x48
#define LDA 0x00
#define LDB 0x68
#define LDCH 0x50
#define LDF 0x70
#define LDL 0x08
#define LDS 0x6C
#define LDT 0x74
#define LDX 0x04
#define LPS 0xD0
#define MUL 0x20
#define MULF 0x60
#define MULR 0x98
#define NORM 0xC8
#define OR 0x44
#define RD 0xD8
#define RMO 0xAC
#define RSUB 0x4C
#define SHIFTL 0xA4
#define SHIFTR 0xA8
#define SIO 0xF0
#define SSK 0xEC
#define STA 0x0C
#define STB 0x78
#define STCH 0x54
#define STF 0x80
#define STI 0xD4
#define STL 0x14
#define STS 0x7C
#define STSW 0xE8
#define STT 0x84
#define STX 0x10
#define SUB 0x1C
#define SUBF 0x5C
#define SUBR 0x94
#define SVC 0xB0
#define TD 0xE0
#define TIO 0xF8
#define TIX 0x2C
#define TIXR 0xB8
#define WD 0xDC
// SW register condition codes
constexpr int CC_LT = 0x0; // 00
constexpr int CC_EQ = 0x1; // 01
constexpr int CC_GT = 0x2; // 10
constexpr int CC_MASK = 0x3; // mask for 2 bits
enum class InstructionType {
TYPE1,
TYPE2,
TYPE3_4,
INVALID
};
class Machine; // forward
// Store raw function pointer (void*) to allow different handler signatures
using RawHandler = void*;
struct InstructionInfo {
const char* name;
InstructionType type;
RawHandler handler;
};
extern InstructionInfo instructions[];
// Initialize the instruction table
void loadInstructionSet();
#endif // OPCODE_H

View file

@ -0,0 +1,18 @@
#ifndef OUTPUT_DEVICE_H
#define OUTPUT_DEVICE_H
#include "device.h"
#include <ostream>
class OutputDevice : public Device {
public:
explicit OutputDevice(std::ostream &out);
~OutputDevice();
void write(unsigned char value) override;
private:
std::ostream &outStream;
};
#endif // OUTPUT_DEVICE_H

View file

@ -0,0 +1,19 @@
#include "device.h"
Device::Device()
{
}
bool Device::test()
{
return true;
}
unsigned char Device::read()
{
return 0;
}
void Device::write(unsigned char value)
{
}

View file

@ -0,0 +1,45 @@
#include "file_device.h"
#include <stdexcept>
#include <fstream>
FileDevice::FileDevice(const std::string &filename)
{
fileStream.open(filename, std::ios::in | std::ios::out | std::ios::binary);
if (!fileStream.is_open()) {
std::ofstream create(filename, std::ios::binary);
if (!create) {
throw std::runtime_error("Failed to create file: " + filename);
}
create.close();
fileStream.clear();
fileStream.open(filename, std::ios::in | std::ios::out | std::ios::binary);
if (!fileStream.is_open()) {
throw std::runtime_error("Failed to open file after creating: " + filename);
}
}
}
FileDevice::~FileDevice()
{
if (fileStream.is_open()) {
fileStream.close();
}
}
unsigned char FileDevice::read()
{
unsigned char value = 0;
if (fileStream.is_open()) {
fileStream.read(reinterpret_cast<char*>(&value), sizeof(value));
}
return value;
}
void FileDevice::write(unsigned char value)
{
if (fileStream.is_open()) {
fileStream.write(reinterpret_cast<const char*>(&value), sizeof(value));
fileStream.flush();
}
}

View file

@ -0,0 +1,20 @@
#include "input_device.h"
InputDevice::InputDevice(std::istream &in)
: inStream(in)
{
}
InputDevice::~InputDevice()
{
}
unsigned char InputDevice::read()
{
char c;
if (!inStream.get(c)) {
// If stream is at EOF or error, return 0
return 0;
}
return static_cast<unsigned char>(c);
}

View file

@ -0,0 +1,60 @@
#include "instructions.h"
#include "machine.h"
void addr_handler(Machine& m, int r1, int r2) {
m.setReg(r2, m.getReg(r1) + m.getReg(r2));
}
// CLEAR instruction: clears register r (first nibble), second nibble unused
void clear_handler(Machine& m, int r, int unused) {
m.setReg(r, 0);
}
void divr_handler(Machine& m, int r1, int r2) {
if (m.getReg(r2) == 0) {
m.invalidOpcode(DIVR);
return;
}
m.setReg(r2, m.getReg(r2) / m.getReg(r1));
}
void mulr_handler(Machine &m, int r1, int r2)
{
m.setReg(r2, m.getReg(r1) * m.getReg(r2));
}
void rmo_handler(Machine &m, int r1, int r2)
{
m.setReg(r2, m.getReg(r1));
}
void shiftl_handler(Machine &m, int r1, int n)
{
m.setReg(r1, m.getReg(r1) << n);
}
void shiftr_handler(Machine &m, int r1, int n)
{
m.setReg(r1, m.getReg(r1) >> n);
}
void subr_handler(Machine &m, int r1, int r2)
{
m.setReg(r2, m.getReg(r2) - m.getReg(r1));
}
// TODO: implement SVC functionality
void svc_handler(Machine &m, int n, int unused)
{
m.notImplemented("SVC");
}
void tixr_handler(Machine &m, int r1, int unused)
{
m.setX(m.getX() + 1);
int valX = m.getX();
int valR1 = m.getReg(r1);
m.setSW(sic_comp(valX, valR1, m.getSW()));
}

View file

@ -0,0 +1,261 @@
#include "machine.h"
#include <memory>
#include "opcode.h"
#include "instructions.h"
using std::make_shared;
string prefix = "Machine error: ";
Machine::Machine()
{
devices.resize(NUM_DEVICES);
// device 0: standard input
devices[0] = make_shared<InputDevice>(std::cin);
// device 1: standard output
devices[1] = make_shared<OutputDevice>(std::cout);
// device 2: standard error
devices[2] = make_shared<OutputDevice>(std::cerr);
}
Machine::~Machine()
{
for (auto& device : devices) {
device.reset();
}
}
void Machine::notImplemented(string mnemonic)
{
cout << prefix << "Not implemented: " << mnemonic << endl;
}
void Machine::invalidOpcode(int opcode)
{
cout << prefix << "Invalid opcode: " << opcode << endl;
}
void Machine::invalidAddressing()
{
cout << prefix << "Invalid addressing mode" << endl;
}
void Machine::divisionByZero(int opcode)
{
cout << prefix << "Division by zero error in opcode: " << opcode << endl;
}
void Machine::undefinedHandler(int opcode)
{
cout << prefix << "Undefined handler for opcode: " << opcode << endl;
}
int Machine::getReg(int regNum) const
{
switch (regNum) {
case 0: return A;
case 1: return X;
case 2: return L;
case 3: return B;
case 4: return S;
case 5: return T;
case 6: return F;
case 8: return PC;
case 9: return SW;
default:
cerr << prefix << "Invalid register number: " << regNum << endl;
return -1;
}
}
// TODO: handle double for F register
void Machine::setReg(int regNum, int value)
{
value = toSIC24(value);
switch (regNum) {
case 0: A = value; break;
case 1: X = value; break;
case 2: L = value; break;
case 3: B = value; break;
case 4: S = value; break;
case 5: T = value; break;
case 6: F = value; break;
case 8: PC = value; break;
case 9: SW = value; break;
default:
cerr << prefix << "Invalid register number: " << regNum << endl;
break;
}
}
int Machine::getByte(int address)
{
if (address < 0 || address >= MEMORY_SIZE) {
cerr << prefix << "Invalid memory address: " << address << endl;
return -1;
}
return static_cast<int>(memory[address]);
}
void Machine::setByte(int address, int value)
{
if(address < 0 || address >= MEMORY_SIZE) {
cerr << prefix << "Invalid memory address: " << address << endl;
return;
}
memory[address] = static_cast<unsigned char>(value);
}
// Assuming word is 3 bytes
int Machine::getWord(int address)
{
if (address < 0 || address + 2 >= MEMORY_SIZE) {
cerr << prefix << "Invalid memory address: " << address << endl;
return -1;
}
return static_cast<int>(memory[address]) | (static_cast<int>(memory[address + 1]) << 8) | (static_cast<int>(memory[address + 2]) << 16);
}
// Assuming word is 3 bytes
void Machine::setWord(int address, int value)
{
if(address < 0 || address + 2 >= MEMORY_SIZE) {
cerr << prefix << "Invalid memory address: " << address << endl;
return;
}
memory[address] = static_cast<unsigned char>(value & 0xFF);
memory[address + 1] = static_cast<unsigned char>((value >> 8) & 0xFF);
memory[address + 2] = static_cast<unsigned char>((value >> 16) & 0xFF);
}
// TODO: implement proper float storage and retrieval
double Machine::getFloat(int address)
{
return 0.0;
}
void Machine::setFloat(int address, double value)
{
// TODO: implement proper float storage
}
Device &Machine::getDevice(int num)
{
if(num < 0 || num >= static_cast<int>(devices.size()) || !devices[num]) {
cerr << prefix << "Invalid device number: " << num << endl;
return fallbackDevice;
}
return *devices[num];
}
void Machine::setDevice(int num, std::shared_ptr<Device> device)
{
if(num < 0 || num >= NUM_DEVICES) {
cerr << prefix << "Invalid device number: " << num << endl;
return;
}
if(static_cast<int>(devices.size()) != NUM_DEVICES) {
devices.resize(NUM_DEVICES);
}
// Enforce: devices with index >= 2 must be FileDevice instances
if (num >= 2) {
// try dynamic cast
if (std::dynamic_pointer_cast<FileDevice>(device) == nullptr) {
cerr << prefix << "Device at index " << num << " must be a FileDevice." << endl;
return;
}
}
devices[num] = device;
}
void Machine::setFileDevice(int num, const std::string &filename)
{
if(num < 0 || num >= NUM_DEVICES) {
cerr << prefix << "Invalid device number: " << num << endl;
return;
}
if(static_cast<int>(devices.size()) != NUM_DEVICES) {
devices.resize(NUM_DEVICES);
}
try {
devices[num] = std::make_shared<FileDevice>(filename);
} catch (const std::exception &e) {
cerr << prefix << "Failed to create FileDevice for index " << num << ": " << e.what() << endl;
}
}
int Machine::fetch()
{
return getByte(PC++);
}
void Machine::execute()
{
int opcode = fetch();
InstructionType type = instructions[opcode].type;
switch (type) {
case InstructionType::TYPE1: execF1(opcode);break;
case InstructionType::TYPE2: execF2(opcode, fetch());break;
case InstructionType::TYPE3_4: // extract n and i bits
{
int ni = opcode & 0x3;
int operand = fetch();
execSICF3F4(opcode, ni, operand);
}
break;
default: invalidOpcode(opcode); break;
}
}
bool Machine::execF1(int opcode)
{
switch (opcode)
{
case FIX:
setA(static_cast<int>(getF()));
return true;
case FLOAT:
setF(static_cast<double>(getA()));
return true;
case HIO:
notImplemented("HIO");
return true;
case NORM:
notImplemented("NORM");
return true;
case SIO:
notImplemented("SIO");
return true;
case TIO:
notImplemented("TIO");
return true;
default:
break;
}
return false;
}
bool Machine::execF2(int opcode, int operand)
{
int r1 = (operand >> 4) & 0xF;
int r2 = operand & 0xF;
if (instructions[opcode].handler) {
auto handler = reinterpret_cast<void(*)(Machine&, int, int)>(instructions[opcode].handler);
handler(*this, r1, r2);
return true;
}
undefinedHandler(opcode);
return false;
}
bool Machine::execSICF3F4(int opcode, int ni, int operand)
{
return false;
}

View file

@ -0,0 +1,27 @@
#include <iostream>
#include "machine.h"
#include "file_device.h"
#include "opcode.h"
#include "instructions.h"
using std::cout;
using std::endl;
int main()
{
loadInstructionSet();
Machine machine;
cout << "Machine initialized successfully." << endl;
// COMPUTE A + B and store result in B
machine.setA(10);
machine.setB(20);
machine.setByte(0, ADDR);
machine.setByte(1, 0x03); // r1 = 0 (A), r2 = 3 (B)
cout << "Before ADDR: A = " << machine.getA() << ", B = " << machine.getB() << endl;
machine.execute();
cout << "After ADDR: A = " << machine.getA() << ", B = " << machine.getB() << endl;
return 0;
}

View file

@ -0,0 +1,75 @@
#include "opcode.h"
#include "instructions.h"
#include <utility>
InstructionInfo instructions[0xff];
void loadInstructionSet()
{
instructions[ADD] = {"ADD", InstructionType::TYPE3_4, nullptr};
instructions[ADDF] = {"ADDF", InstructionType::TYPE3_4, nullptr};
instructions[ADDR] = {"ADDR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(addr_handler)};
instructions[AND] = {"AND", InstructionType::TYPE3_4, nullptr};
instructions[CLEAR] = {"CLEAR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(clear_handler)};
instructions[COMP] = {"COMP", InstructionType::TYPE3_4, nullptr};
instructions[COMPF] = {"COMPF", InstructionType::TYPE3_4, nullptr};
instructions[COMPR] = {"COMPR", InstructionType::TYPE2, nullptr};
instructions[DIV] = {"DIV", InstructionType::TYPE3_4, nullptr};
instructions[DIVF] = {"DIVF", InstructionType::TYPE3_4, nullptr};
instructions[DIVR] = {"DIVR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(divr_handler)};
instructions[FIX] = {"FIX", InstructionType::TYPE1, nullptr};
instructions[FLOAT] = {"FLOAT", InstructionType::TYPE1, nullptr};
instructions[HIO] = {"HIO", InstructionType::TYPE1, nullptr};
instructions[J] = {"J", InstructionType::TYPE3_4, nullptr};
instructions[JEQ] = {"JEQ", InstructionType::TYPE3_4, nullptr};
instructions[JGT] = {"JGT", InstructionType::TYPE3_4, nullptr};
instructions[JLT] = {"JLT", InstructionType::TYPE3_4, nullptr};
instructions[JSUB] = {"JSUB", InstructionType::TYPE3_4, nullptr};
instructions[LDA] = {"LDA", InstructionType::TYPE3_4, nullptr};
instructions[LDB] = {"LDB", InstructionType::TYPE3_4, nullptr};
instructions[LDCH] = {"LDCH", InstructionType::TYPE3_4, nullptr};
instructions[LDF] = {"LDF", InstructionType::TYPE3_4, nullptr};
instructions[LDL] = {"LDL", InstructionType::TYPE3_4, nullptr};
instructions[LDS] = {"LDS", InstructionType::TYPE3_4, nullptr};
instructions[LDT] = {"LDT", InstructionType::TYPE3_4, nullptr};
instructions[LDX] = {"LDX", InstructionType::TYPE3_4, nullptr};
instructions[LPS] = {"LPS", InstructionType::TYPE3_4, nullptr};
instructions[MUL] = {"MUL", InstructionType::TYPE3_4, nullptr};
instructions[MULF] = {"MULF", InstructionType::TYPE3_4, nullptr};
instructions[MULR] = {"MULR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(mulr_handler)};
instructions[NORM] = {"NORM", InstructionType::TYPE1, nullptr};
instructions[OR] = {"OR", InstructionType::TYPE3_4, nullptr};
instructions[RD] = {"RD", InstructionType::TYPE3_4, nullptr};
instructions[RMO] = {"RMO", InstructionType::TYPE2, reinterpret_cast<RawHandler>(rmo_handler)};
instructions[RSUB] = {"RSUB", InstructionType::TYPE3_4, nullptr};
instructions[SHIFTL] = {"SHIFTL", InstructionType::TYPE2, reinterpret_cast<RawHandler>(shiftl_handler)};
instructions[SHIFTR] = {"SHIFTR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(shiftr_handler)};
instructions[SIO] = {"SIO", InstructionType::TYPE1, nullptr};
instructions[SSK] = {"SSK", InstructionType::TYPE3_4, nullptr};
instructions[STA] = {"STA", InstructionType::TYPE3_4, nullptr};
instructions[STB] = {"STB", InstructionType::TYPE3_4, nullptr};
instructions[STCH] = {"STCH", InstructionType::TYPE3_4, nullptr};
instructions[STF] = {"STF", InstructionType::TYPE3_4, nullptr};
instructions[STI] = {"STI", InstructionType::TYPE3_4, nullptr};
instructions[STL] = {"STL", InstructionType::TYPE3_4, nullptr};
instructions[STS] = {"STS", InstructionType::TYPE3_4, nullptr};
instructions[STSW] = {"STSW", InstructionType::TYPE3_4, nullptr};
instructions[STT] = {"STT", InstructionType::TYPE3_4, nullptr};
instructions[STX] = {"STX", InstructionType::TYPE3_4, nullptr};
instructions[SUB] = {"SUB", InstructionType::TYPE3_4, nullptr};
instructions[SUBF] = {"SUBF", InstructionType::TYPE3_4, nullptr};
instructions[SUBR] = {"SUBR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(subr_handler)};
instructions[SVC] = {"SVC", InstructionType::TYPE2, reinterpret_cast<RawHandler>(svc_handler)};
instructions[TIXR] = {"TIXR", InstructionType::TYPE2, reinterpret_cast<RawHandler>(tixr_handler)};
instructions[TD] = {"TD", InstructionType::TYPE3_4, nullptr};
instructions[TIX] = {"TIX", InstructionType::TYPE3_4, nullptr};
instructions[TIO] = {"TIO", InstructionType::TYPE1, nullptr};
instructions[WD] = {"WD", InstructionType::TYPE3_4, nullptr};
// Mark uninitialized opcodes as INVALID
for (int i = 0; i < 0xff; ++i) {
if (instructions[i].name == nullptr) {
instructions[i] = {"INVALID", InstructionType::INVALID, nullptr};
}
}
}

View file

@ -0,0 +1,16 @@
#include "output_device.h"
OutputDevice::OutputDevice(std::ostream &out)
: outStream(out)
{
}
OutputDevice::~OutputDevice()
{
}
void OutputDevice::write(unsigned char value)
{
outStream.put(static_cast<char>(value));
outStream.flush();
}