Git za matematike

Martin Vuk

Git je program, ki omogoca vodenje zgodovine razli¢ic datotek v nekem direktoriju. V
glavnem se uporablja za upravljanje z izvorno kodo pri razvoju racunalniskih
programov. Mnogi med nami pa ga uporabljajo tudi pri pisanju besedil v LaTeX-u.
Poleg tega, da Git hrani zgodovino sprememb, tudi omogoc¢a da ve¢ ljudi hkrati
sodeluje pri urejanju istih datotek. Ogledali si bomo, kako Git deluje. Opisali bomo,
kako Git uporabi zgoscevalne funkcije, Merklejeva drevesa in usmerjene aciklicne grafe,
da shrani zgodovino razli¢ic in omogoci hkratno urejanje vsebine. Matemati¢ni
model, ki ga Git uporablja je v resnici zelo preprost in njegovo razumevanje nas
lahko resi marsikatere zagate, ki nastane med njegovo uporabo.

1. Kaj je Git?

Git je kot casovni stroj za datoteke. Uporabniku omogoca, da vidi pretekle razlic¢ice datotek,
sprememinja datoteke, brez skrbi, da bi kaj pokvaril in datoteke deli z drugimi. Poleg ¢asovnega stroja
je Git razprseno skladisce datotek. Omogoca, da datoteke hkrati ureja ve¢ uporabnikov na razli¢nih
racunalnikih in kasneje spremembe zdruzi.

Git hrani vsebino direktorija z datotekami in celotno zgodovino razlic¢ic datotek iz preteklosti. Za vsako
razli¢ico hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno
razli¢ico. Vse te imformacije dajejo podroben pregled nad zgodovino sprememb.

Opomba

Git in GitHub nista eno in isto. Ljudje pogosto mesajo Git in GitHub. Git je program, ki si ga lahko vsakdo
namesti in poganja na svojem racunalniku. Program Git je ustvaril Linus Torvalds, da bi laZje upravljal z
izvorno kodo za jedro operacijskega sistema Linux. GitHub je javno spletisce, ki je namenjeno skladis¢enju
Git repozitorijev.

Opomba

Sisteme, ki omogocajo hranjenje preteklih razlicic datotek, imenujemo sistemi za nadzor razlicic (angl.
version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management
(SCM)).

Poleg nadzora razlicic Git omogoca hkratno spreminjanje datotek ve¢ uporabnikov na razlicnih
racunalnikih. Zato je Git distribuiran sistem za nadzor razlicic (angl. Distributed Version Control System
(DVCS)).

V nadaljevanju bomo obravnavali nasledjne teme:

« Podatkovno skladisce: Kako Git uporablja zgoscevalno funkcijo in Merklejeva drevesa za hranjenje
posnetkov vsebine direktorija.

« Zgodovina sprememb: Kako zgodovino predstavimo z usmerjenim acikli¢nim grafom, v katerem so
vozlisca razlicice in ki povezuje razlic¢ice z njihovimi neposrednimi predhodniki.

« Reference: Kako preproste reference (kazalci) na vsebino omogoéajo bliskovito preklaplanje med
razli¢icami in preprecijo popolno zmesnjavo, ko vec ljudi hkrati spreminja iste datoteke.

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

2. Podatkovno skladisce

Ko ustvarimo nov Git repozitorij, Git ustvari direktorij z imenom .git, ki vsebuje vse podatke, ki jih Git
potrebuje. Git v mapi .git hrani razli¢ne stvari:

« vsebino datotek, s ki smo jih dodali v repozitorij

o drevesno strukturo direktorija

« posnetke stanja v rezli¢nih trenutkih s podatki o avtoju, datumu in opisu sprememb

« kazalce na posamezne posnetke stanja

Git repozitorij je vsak direktorij, ki vsebuje poddirektorij .git z zgoraj navedenimi podatki. Podrobnosti o
tem lahko preberete v knjigi Pro Git [1, pog. 10.2].

2.1. Zgoscevalna funkcija

Git ne shranjuje datotek z obic¢ajnimi imeni, ampak za ime uporabi vrednost zgoscevalne funkcije njene
vsebine. Git uporablja zgoscevalno funkcijo SHA-1. Funkcija SHA1 je posebna implementacija zgoscevalne
funkcije, ki se uporablja v kriptografiji.

Naj bo B mnoZica vseh moznih podatkovnih nizov(besedil). Zgos¢evalna funkcija SHAT je funkcija

H:B—{0,1,...,2%9 —1}

ki vsakemu besedilu b priredi 160-bitno zgoséeno vrednost besedila H (b). Funkcija H, je izbrana tako, da
sprememba enega samega bita v besedilu b € B spremeni vrednost H (b). Poleg tega zahtevamo, da je
porazdelitev vrednosti H(b) ¢im bliZje enakomerni porazdelitvi. To pomeni, da so vse vrednosti H (b)
priblizno enako verjetne. Kljub temu, da zgoscevalna funkcija H ni injektivna, je verjetnost, da bi imela

—159)

dva podatkovna niza isto vrednost H zelo majhna(~ 2 . Zato lahko v praksi predpostavimo, da je z

vrednostjo H (b) niz b enoli¢no dolocen.

Ko datoteko z vsebino b zabelezimo v Git repozitorij, git shrani vsebino v datoteko z imenom H (b) v git/
objects'. Vsebina b je tako vedno dostopna pod imenom H (b). Tako dobimo vsebinsko naslovljivo
shrambo objektov, ki je ena od bistvenih znacilnosti Gita. Ta na¢in shranjevanja omogoca, da lahko vedno
preverimo, ¢e ima shranjenjena vsebina isto vrednost zgoscevalne funkcije, kot je njeno ime. Lahko tudi
shranimo vec razlicic iste datoteke, saj ima vsaka razlic¢ica drugacno zgoscevalno vrednost. Zgoscevalna
vrednost sluzi tudi kot kontrola, e je prislo do kvaritve podatkov, ki so shranjeni v Git repozitoriju.

2.2. Datote¢na drevesa

V vsebinsko naslovljivo shrambo objektov lahko shranimo vsebino datotek in njihovih prejsnjih razli¢ic. A
kako ohranimo informacijo o imenu datotek in drevesni strukturi direktorija? Git za to ustvari nov tip
objekta drevo (angl. tree), ki hrani preprost seznam imen datotek in naslovov na vsebino datotek v
direktoriju. Naslov na vsebino datoteke b je seveda zgos¢ena vrednost vsebine H (b). Seznam imen datotek
in zgoscenih vrednosti je preprosta tekstovna datoteka, za katero lahko izracunamo zgo$c¢eno vrednost.
Zgoscena vrednost datotecnega drevesa natanko doloca tako imena datotek, kot tudi vsebino datotek, ki so
vsebovane v direktoriju. Ce se katerakoli datoteka ali ime datoteke v direktoriju sprementi, se bo spremnila
tudi njena zgo$cena vrednost in posledi¢no zgoscena vrednost za drevo. Poleg posameznih datotek, lahko
drevo vsebuje tudi poddrevesa. Tako lahko rekurzivno ustvarimo drevesno podatkovno strukturo, ki
zajema direktorij z datotekami in poddirektoriji v poljubni globini.

'V resnici Git shrani vsebino v datoteko z imenom hghy...hy v mapi hy by, Kjer je hyhohg...hyq zapis H(b) v 16-tislkem
sistemu. Datoteka, katere vsebina ima zgo3¢eno vrednost H (b) enako 8dd6d4bdaeff93016bd49474b542911131759648 bo
shranjena v .git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648

2

https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage

100644 blob bcc1382241e267cf790cabb3afe9fdebdcfl072f bla.txt
100644 blob 2ce22b4dc77442103f09550311205937c1b0Ofcfc blabla.txt
040000 tree 605f479464bebedf7250ace49bab48e72855F84a podmapa

Program 1: Vsebina direktorija v Gitu je preprost seznam datotek in poddirektorijev in zgo$€enih vrednosti
njihove vsebine

Poglejmo si primer. Denimo, da imamo v naslednjo strukturo datotek in poddirektorijev

— bla.txt (vsebina: bla)
L— mapa
— bla.txt (vsebina: bla)
L— plabla.txt (vsebina: blabla)

Git bo shranil naslednje objekte v vsebinsko naslovljivo shrambo:
« vsebino datoteke bla.txt:

Zgoscena vrednost: bcc1382241e267cf790cabb3afe9fde6dcf1072f
bla

« vsebino datoteke blabal.txt:

Zgoscena vrednost: 2ce22b4dc77442103f095503f1205937c1b0Ofcfc
blabla

« seznam datotek v direktoriju mapa:

Zgoscena vrednost: e8cc593eddfb9cfdafb4f9c46ab7f5a05ea00b2b

100644 blob bccl382241e267cf790cabb3afe9fde6dcf1072f bla.txt
100644 blob 2ce22b4dc77442103f09550311205937clbOfcfc blabla.txt

» seznam datotek v korenskem direktoriju:

Zgoscena vrednost: 1331d77b31e40d6b470706b195F21244bb32cf21

100644 blob bccl382241e267cf790cabb3afe9fdebdcfl072f bla.txt
040000 tree e8cc593eddfb9cfdaftb4f9c46ab7f5a05ea00b2b mapa

Git z uporabo zgoscene vrednosti kot kazalca na vsebino, vsebino direktorija postavi v podatkovno
strukturo, ki jo matemati¢no lahko opiSemo z usmerjenim aciklicnim grafom. Ko je vsebina datotek
enaka(npr. bla. txt in mapa/bla. txt), Git shrani le eno kopijo, ki je dostopna v datoteki .git/objects/
bc/c1382241e267cf790cabb3afedfdebdcfl072f. Zato datotecno drevo v Gitu ni nujno predstavljeno kot
drevo, ampak kot usmerjen acikli¢ni graf.

bcc138) bla.txt 133147

bla) drevo
bla.txt mapa

2ce22b blabla.txt [agecso

(—
blabla drevo
Slika 1: Primer datote¢nega grafa povezanega z zgos$cenimi vrednostmi

Posledi¢no lahko celotno vsebino direktorija opisemo z eno samo zgo$ceno vrednostjo. Ce spremenimo
vsebino, ime ali lokacijo datoteke, bo sprememba vplivala na zgo$€eno vrednost spremenjene vsebine in
sprememba bo splavala na povrsje do zgo$cene vrednosti za korenski direktorij. Zgo$c¢ena vrednost sluzi
tako kot identifikator vsebine, kot tudi kot kontrolna vsota, ki omogoca detekcijo sprememb.

Opomba

Podatkovna struktura objektov v Gitu je podobna Merklejevim drevesom. Razlika je v tem, da Gita hrani le
eno kopijo datotek z identicno vsebino, zato dobimo usmerjen aciklicni graf in ne drevesa. Postopek je
podoben verizenju blokov, ki se uporablja v kriptovalutah.

Opomba

Dostop do objekta je mogoc, e poznamo zgoséeno vrednost njegove vsebine. To pomeni, da je referenca na
posamezen objekt v Gitu preprosto zgoscena vrednost(angl. hash) vsebine tega objekta. Po drugi strani je
vsebina objekta doloCena z njegovo zgosceno vrednostjo. To pomeni, da lahko enostavno preverimo
verodostojnost vsebine, ki je shranjena v Gitu. Git hrani skladisce objektov v direktoriju .git/objects.

3. Zgodovinski graf sprememb

V prejsnjem poglavju smo videli, kako Git hrani vsebino direktorija in kako je mogoce do vsebine
dostopati ¢e poznamo zgo$ceno vrednost korenskega direktorija. Zgodovinsko drevo sprememb je
preprosta razsiritev omenjene podatkovne strukture.

3.1. Posnetki stanja

Osnovna enota v Gitu je Vnos (angl. commit). Vnos je posnetek stanja zabelezenih datotek v trenutku, ko
je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje e metapodatke o avtorju, datumu vnosa in
opisom sprememb. Podobno kot objekt tipa drevo, je tudi vnos objekt v vsebinsko naslovljivi shrambi, ki je
ima dolo¢eno zgosceno vrednost vnosa. Zgoscena vrednost vnosa je natanko dolocena z vsebino
shranjenih datotek in metapodatkov vnosa.

Zgoscena vrednost: 8dd6d4bdaeff93016bd49474b54a911131759648

tree 65c47feec7465e80492620a48206793e078702e0
parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Tabela 1: Primer vnosa v Gitu. Vnos vsebuje zgos¢eno vrednost posnetka direktorija(tree), zgos¢eno
vrednost starSevskega vnosa (parent) in metapodatke. Tudi sam vnos je natanc¢no dolocen z zgosc¢eno
vrednostjo.

Vsak vnos je povezan s to¢no dolo¢enim posnetekom vsebine korenskega datote¢nega drevesa, ki ga
identificira zgo$¢ena vrednost. Poleg tega so posamezni vnosi so povezani v usmerjen acikli¢en graf
(DAG), ki predstavlja zgodovino sprememb. Vsak vnos je vozlisce v grafu. Vsak vnos izhaja iz enega ali
ve¢ starSevskih vnosov. Izjema je prvi vnos. Povezave v grafu povezujejo vnose z njihovimi starsi.

ddedos8 28782c

32922 d2a671

Slika 2: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih izhaja.

Git hrani zgodovino sprememb v vsebinsko naslovljivi shrambi objektov, ki hrani tri vrste objektov:
« blob: vsebina datotek,

« tree: vsebina direktorijev,

« commit: posnetek vsebine v dolocenem trenutku.

Objekti so poevazni v usmerjen acikli¢ni graf. Podgraf na vnosih dolo¢a zgodovino sprememb. Naslovi
objektov so zgoscene vrednosti vsebine objekta, zato je zagotovljena verodostojnost shranjenih podatkov.

vsebina (blob) drevesa (tree) vnosi (commit)
bcc138
bla bla.txt
ael2fg ’ 7e43al
a k¥t

‘o\ab\ koren) Prvi vnos
2ce22b / .
blabla % stars
32e4f1) 4ef531

plaixt koren) Popravi bla.txt

!

33476f

bla!
Slika 3: Vsebinsko naslovljiva shramba objektov v Gitu. Naslovi so zgos$¢ene vrednosti vsebine. Shramba
vsebuje dva vnosa. V prvem vnosu smo dodali dve datoteki bla.txt in blabla.txt, v drugem vnosu pa
smo spremenili le vsebino datotoeke bla. txt.

4. Kazalci: veje in znacke

Poleg objektov kot so vnosi, posnetki direktorijev in posnetki datotek pozna git Se reference. Reference so

E main)

~

e23d19 3943eb 98ff21 4e96al

7

kazalci z dolocenim imenom na posamezen vnos.

v-1.0
Slika 4: Veja (angl. branch) ali znacka(angl. tag) je preprost kazalec na posamezen vnos(angl. commit).

Referenc git ne hrani v skladis¢u objektov, temve¢ posebej v direktoriju .git/refs. Zato so reference
vezane na posamezen repozitorij in se lahko razlikujejo med razli¢nimi kloni dolo¢enega repozitorija.

Veja (angl. branch) je posebne vrste referenca, ki se premika, ko dodajamo nove vnose. Vsaki¢ ko
ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni vnos.

Znacka (angl. tag) je referenca, ki je stati¢na in se ne premika ve¢, ko jo enkrat ustvarimo.

main > main)
e23d19 3943eb 98ff21 4e96al
Ev—l.O)

Slika 5: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, znacka v-1.0 pa ostane tam, kjer je
bila.

Opomba

Veje in znacke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose. Pomen
posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja razlicne veje za razlicne
namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production, development
in podobno oznacujejo razlicne stopnje razvoja programske opreme, veje s predpono feature- oznacujejo
razvoj novih funkcionalnosti.

Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git repozitoriju. Za Git so vse veje in znacke zgolj
preprosti kazalci na dolocen vnos.

HEAD je posebna referenca, ki kaZe na trenutno aktiven vnos. Vnos, na katerega kaze HEAD bo starsevski

vnos naslednjeg vnosa, ki ga bomo dodali.
; main)

e23d19 3943eb 98FF21 K- 4e96al |

) HEAD) index |

Slika 6: HEAD je referenca na trenutno aktiven vnos. Index vsebuje spremembe, ki bodo zabeleZene v
naslednjem vnosu.

4.1. Povzetek

Povzemimo sedaj, kaj smo spoznali o podatkovnem modelu Gita. V vsebinsko naslovljivi shrambi hrani Git

posnetke stanja direktorija, ki ga vodimo v repozitoriju skupaj z metapodatki o spremembah.

Najpomembnejsa pojma sta:

» Vnos (angl. commit) je posnetek trenutnega stanja projekta, shranjen kot vozlis¢e v zgodovinskem
grafu, ki vsebuje posnetek stanja datotek ter metapodatke (avtor, ¢as, sporo¢ilo).

» Zgoscena vrednost vnosa (angl. commit hash) je 40-mestna heksadecimalna vrednost, izra¢unana s
SHA-1, ki enoli¢no identificira vnos na podlagi vsebine posnetka in metapodatkov.

Izven shrambe objektov hrani Git Se reference na posamezne vnose. Poznamo dve vrsti referenc:

 Veja (angl. branch) je premicna reference, ki kaze na dolofen vnos v zgodovini in se samodejno
premakne naprej, ko dodajamo nove vnose. Veje omogocajo vzporedne razvojne linije ki so med sabo
neodvisne.

« Oznaka (angl. tag) je staticna referenca, ki trajno kaze na dolocen vnos. Za razliko od veje se oznaka,
nikoli ne premika samodejno, zato se uporablja predvsem za oznaevanje pomembnih toc¢k v zgodovini,
kot so izdaje ali stabilne verzije.

« HEAD je posebna oznaka, ki kaze na trenutno aktiven vnos v delovni kopiji.

Omenimo $e dva pojma, ki jih uporabljamo pri delu z Gitom:

+ Delovna kopija (angl. workout copy) je direktorij v katerem urejamo datoteke, ki jih nato vnesemo v
Git. V delovni kopiji imajo na zacetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa
(HEAD). Spremembe, ki jih naaredimo na delovni kopiji lahko zabelezimo v nov vnos.

« Oddaljen repozitorij (angl. remote) je povezava(url) na isti repozitorij na drugem
racunalniku(ponavadi strezniku), s katerim lahko izmenjujemo vsebino.

Opomba

Gitov podatkovni model omogoca, da je vecina operacij v Gitu obrnljivih. To pomeni, da lahko repozitorij
povrnemo v prejsnje stanje. Obicajne operacije le dodajajo nove vnose in starih ne brisejo. Prav tako se v
zgodovinsko drevo le dodaja nove povezave in starih se ne brise. Zato daje delo z Gitom uporabniku
samozavest, da brez strahu spreminja vsebino, saj se lahko vedno vrne v ¢asu nazaj, kot da bi imel ¢asovni
stroj.

Nekatere operacije pa tudi briSejo vnose (npr. git rebase). Takim operacijam recemo, da spreminjajo
zgodovino. Uporabniki morajo biti pri uporabi operacij, ki spreminjajo zgodovino posebej pazljivi, da cesa
trajno ne zamocijo.

5. Git ukazi kot operacije na grafu

Ko smo opremljeni z razumevanjem podatkovnega modela Gita, razlozimo kaj pomenijo posamezne
operacije, ki jih Git omogoca. Ukazov ne bom prevajal, ampak jih bom navedel kot jih pozna program git.

5.1. Checkout

Ukaz
git checkout referenca

spremeni datoteke v delovni kopiji tako, da se ujemajo z vnosom, na katerega kaZze referenca. Poleg tega
prestavi oznako HEAD na isti vnos. Ce je referenca veja, jo nastavi, kot aktivno vejo. Ce je referenca oznaka
ali zgo$c€ena vrednost vnosa, priedmo v stanje brez aktivne veje (angl. deteached HEAD).

5.2. Commit

Ukaz
git commit -m "Sporoc¢ilo za vnos"

ustvari nov vnos, ki kaZe na stanje v ¢akalnici (angl. staging area ali index). V zgodovinskem grafu ustvari
novo vozlisce, ki je povezano s prej$njim vnosom. Poleg tega prestavi aktivno vejo in oznako HEAD na novo
ustvarjeni vnos.

5.3. Add

Ukaz
git add bla.txt

doda vsebino spremenjene datoteke bla. txt v ¢akalnico. Ukaz ne spreminja zgodovinskega grafa, pac pa
doda novo vsebino in datote¢na drevesa, ki vsebujejo spremembe v shrambo objektov. Vsebina ¢akalnice
bo zabeleZena v naslednjem vnosu.

5.4. Pull

Ukaz
git pull

pobere vsebino(objekte in reference) iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno.
Shrambi objektov se preprosto doda nove objekte, ki so v oddaljeni veji. Ce je lokalna veja prednik
oddaljene, se lokalna veja enostavno prestavi, da kaze na isti vnos, kot oddaljena veja. V nasprotnem
primeru, mora uporabnik posredovati in razresiti morebitne konflikte.

5.5. Push

Ukaz
git push

potisne novo vsebino na oddaljeni repozitorij. Push deluje obratno kot pull. Ukaz je uspe$no izveden le, ¢e
je oddaljena veja prednica lokalne veje in ni konflikotov.

5.6. Fetch

Ukaz
git fetch

pobere novo vsebino (vnose, veje in oznake) iz oddaljenega repozitorija. Pri tem ne more priti do
konfliktov, ker git preprosto doda nove objekte v shrambo in obstojeéih objektov nikakor ne spreminja.
Oddaljenim vejam in oznakam preprosto doda predpono z imenom oddaljenega repozitorija.

6. Reset

Ukaz
git reset referenca

spremeni kam kaze trenutno izbrana veja. Ukaz ne spremeni zgodovinskega drevesa, ampak le to, na kateri
vnos kaZze trenutno izbrana veja.

6.1. Merge

Ukaz
git merge referenca

ustvari nov vnos, ki zdruzi dve lo¢eni veji v eno (trenutno izbrano in referenco). Nov vnos ima dva starsa:
vnos na katerega kaze trenutna veja in vnos, na katerega kaze referenca. Ce pride do konfliktov, jih mora
uporabnik sam razresiti, preden se ustvari nov vnos.

6.2. Rebase

Ukaz
git rebase referenca

prestavi vnose v trenutno izbrani veji tako, da so potomci vnosa, na katerega kaze referenca. Med ukazi, ki
smo jih spoznali, je ta ukaz edini, ki lahko povzro¢i izgubo podatkov. Obicajno ukazi le dodajajo nove
vnose in prestavljajo reference. Zato je ve¢ina ukazov v Gitu varna, v smislu, da jih lahko kasneje
preklicemo in pridemo nazaj na prej$nje stanje. Ukaz rebase pa spremeni zgodovino in ga ne moremo
preklicati, saj trenutne vnose nadomesti z novimi in stare vnose pobrise?.

6.3. Zakljucek

Spoznali smo, kako deluje Git in s katere matemati¢nime pojme uporablja za model. Opis dela z Gitom
presega namen tega dokumenta, zato vas raje usmerim na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

*Obstaja enostaven nacin, da tudi rebase lahko prekli¢emo. Na zadnji vnos, ki ga Zelimo prestaviti preprosto postavimo
novo referenco(vejo ali oznako). To povzro¢i, da se stari vnosi ne pobriSejo tudi, ko se izvede ukaz rebase.

8

https://git-scm.com/cheat-sheet

Pri pisanju tega ¢lanka sem sevada uporabljal Git. V javno dostopnem repozitoriju [2] si lahko ogledate
celotno zgodovino nastajanja tega ¢lanka.

Pri pripravi dokumenta sem uporabil Gemini 3. Vse odgovore sem preveril in uredil po svoje.

Literatura

[1] S. Chacon in B. Straub, ,,10.2 Git Internals - Git Objects®, Pro Git. Pridobljeno: 3. januar 2026. [Na
spletu]. Dostopno na: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

[2] M. Vuk, ,Uvod v Git“ Pridobljeno: 3. januar 2026. [Na spletu]. Dostopno na: https://git.fri.uni-lj.si/
martin.vuk/git-intro

Sledi $e skica, ki povzame vse komponente Git repozitorija.

https://git.fri.uni-lj.si/martin.vuk/git-intro
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git.fri.uni-lj.si/martin.vuk/git-intro
https://git.fri.uni-lj.si/martin.vuk/git-intro

BRANCHES
references that move
along when

commiting changes

Version history

Directed Acyclic Graph (DAG)
describes version history.
Commits are nodes in DAG.
Commits are connected with
their parents.

time

A 7b67bd)

__________________________________)

references that don’t

move

Merge commit
commit with two parents

Z
N

cb48cd

bla bla %
%

e05dcd
y tree

43e2f7
tree

077231

d1bc32
bla

I
dooia

Content addressable object store

' STAGING AREA (INDEX)
. filesystem snapshot that

! |

1
! |
i will be commited in the |
! 1
1

! next commit

HeAD
reference to current branch

parent to the next commit

CommiIT
file tree snapshot with
metadata in object store

commit hash: aa®83c

tree 43e2f7

parent 93f4ee
author Martin Vuk
committer MV <mv...

Add bla

.git/objects :

I aa083c :

) Add bla :
93f4ee

% 1

Merge commit

	1. Kaj je Git?
	2. Podatkovno skladišče
	2.1. Zgoščevalna funkcija
	2.2. Datotečna drevesa

	3. Zgodovinski graf sprememb
	3.1. Posnetki stanja

	4. Kazalci: veje in značke
	4.1. Povzetek

	5. Git ukazi kot operacije na grafu
	5.1. Checkout
	5.2. Commit
	5.3. Add
	5.4. Pull
	5.5. Push
	5.6. Fetch

	6. Reset
	6.1. Merge
	6.2. Rebase
	6.3. Zaključek

	Literatura

