
Matematični pogled na Git

Martin Vuk
Fakulteta za računalništvo in informatiko

Univerza v Ljubljani

15. januar 2026

Povzetek

Git je program, ki omogoča vodenje zgodovine različic datotek v neki mapi(direktoriju). V glav-
nem se uporablja za upravljanje z izvorno kodo pri razvoju računalniških programov. Mnogi med nami
pa ga uporabljajo tudi pri pisanju besedil v LATEX-u. Poleg tega, da Git hrani zgodovino sprememb,
tudi olajša združevanje sprememb, ko več ljudi hkrati ureja iste datoteke. Ogledali si bomo, kako Git
deluje. Opisali bomo, kako Git uporabi zgoščevalne funkcije, Merklejeva drevesa in usmerjene aci-
klične grafe, da shrani zgodovino različic in olajša hkratno urejanje vsebine. Matematični model, ki
ga Git uporablja, je v resnici zelo preprost in njegovo razumevanje nas lahko reši marsikatere zagate,
ki nastane med njegovo uporabo.

Abstract

Git is a version control system that allows tracking changes in files within a directory. It is mainly
used for source code management in software development. However, many of us also use it for writing
texts in LATEX. Besides tracking history, Git facilitates merging changes when multiple people edit
the same files simultaneously. We will look at how Git works. We will describe how Git uses hash
functions, Merkle trees, and directed acyclic graphs to store version history and facilitate concurrent
content editing. The mathematical model used by Git is actually very simple, and understanding it
can save us many headaches during its use.

Ključne besede: Git, sistem za nadzor različic, zgoščevalna funkcija, usmerjen aciklični graf, roj-
stnodnevni problem.

Keywords: Git, Version Control System, Hash Function, Directed Acyclic Graph, Birthday Problem.

Math. Subj. Class. (2020) 68P05, 68P20, 05C20, 60C05.

1 Kaj je Git?
Git je kot časovni stroj za datoteke. Uporabniku omogoča, da vidi pretekle različice datotek, spreminja
datoteke, brez skrbi, da bi kaj pokvaril in jih deli z drugimi. Poleg časovnega stroja je Git tudi razpršeno
skladišče datotek. Omogoča, da datoteke hkrati ureja več uporabnikov na različnih računalnikih in kasneje
spremembe združi.

Git hrani vsebino mape z datotekami in celotno zgodovino različic datotek iz preteklosti. Za vsako
različico hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno
različico. Vse te imformacije dajejo podroben pregled nad zgodovino sprememb.

Sisteme, ki omogočajo hranjenje preteklih različic datotek, imenujemo sistemi za nadzor različic (angl.
version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management
(SCM)). Poleg nadzora različic Git omogoča hkratno spreminjanje datotek več uporabnikov na različnih
računalnikih. Zato je Git distribuiran sistem za nadzor različic (angl. Distributed Version Control System
(DVCS)).

Opomba 1 Ljudje pogosto mešajo Git in GitHub, ki pa nista eno in isto. Git je program, ki si ga lahko
vsakdo namesti in poganja na svojem računalniku. Program Git je ustvaril Linus Torvalds, da bi lažje
upravljal z izvorno kodo za jedro operacijskega sistema Linux. GitHub je javno spletišče, ki je namenjeno
skladiščenju Git repozitorijev.

1

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control

V nadaljevanju si bomo ogledali, kako Git uporablja zgoščevalno funkcijo (angl. hash function) in
posplošitev Merklejevih dreves za hranjenje posnetkov vsebine mape. Kako zgodovino sprememb pred-
stavimo z usmerjenim acikličnim grafom, v katerem so vozlišča različice, povezave pa povežejo različice
z njihovimi neposrednimi predhodniki in kako preproste reference (kazalci) na vsebino omogočajo bli-
skovito preklaplanje med različicami in preprečijo popolno zmešnjavo, ko več ljudi hkrati spreminja iste
datoteke?

2 Podatkovno skladišče
Ko ustvarimo nov Git repozitorij, Git ustvari podmapo z imenom .git z vsemi podatki, ki jih potrebuje.
V mapi .git se hranijo različne stvari:

• vsebina datotek, ki smo jih dodali v repozitorij,

• drevesna struktura korenske mape, ki jo hranimo v repozitoriju,

• posnetki stanja v različnih trenutkih s podatki o avtoju, datumu in opisu sprememb,

• kazalci na posamezne posnetke stanja.

Git repozitorij je vsaka mapa, ki vsebuje podmapo .git z zgoraj navedenimi podatki. Kako Git hrani
podatke bomo spoznali v nadaljevanju, podrobnosti pa si lahko preberete v knjigi Pro Git [2].

3 Zgoščevalna funkcija
Git ne shranjuje datotek z običajnimi imeni, ampak za ime uporabi 160 bitno število (40 mestno število v
16-tiškem zapisu), ki ga izračuna iz vsebine datoteke. Git za izračun imena uporabi zgoščevalno funkcijo.
Naj bo B množica vseh možnih podatkovnih nizov(besedil), n-bitna zgoščevalna funkcija je funkcija

H : B → {0, 1, . . . , 2n − 1} ,

ki vsakemu besedilu b priredi n-bitno vrednost H(b). Vrednosti zgoščevalne funkcije H(b) pravimo zgo-
stitev vsebine b (angl. hash). Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Kaj pa če
imata dve različni vsebini isto zgostitev? Funkcija H ni injektivna, saj je množica nizov, bistveno večja
od množice zgostitev. To pomeni, da imata lahko dve različni datoteki enako zgostitev. Če se to zgodi,
rečemo, da pride do trka zgostitve. V primeru trka zgostitve bi Git shranil le eno datoteko, za drugo
pa bi predpostavil da je že shranjena. Zato je funkcija H izbrana tako, da sprememba enega samega
bita v besedilu b ∈ B spremeni vrednost H(b) in je porazdelitev vrednosti H(b) čim bližje enakomerni
porazdelitvi. To pomeni, da so vse vrednosti H(b) približno enako verjetne. Na ta način zmanjšamo
verjetnost trka (glej poglavje 9). Verjetnost trka je izjemno majhna, zato Git lahko predpostavi, da je
niz b enolično določen z njegovo zgostitvijo H(b). Git uporablja 160 bitno zgoščevalno funkcijo SHA1, ki
se je uporabljala v kriptografiji1.

Ko datoteko z vsebino b zabeležimo v Git repozitorij, Git izračuna zgostitev vsebine H(b) in jo shrani
v datoteko z imenom H(b) v .git/objects2. Vsebina b je tako vedno dostopna pod imenom, ki je
enako njeni zgostitvi H(b). Tako dobimo vsebinsko naslovljivo shrambo objektov, ki je ena od bistvenih
značilnosti Gita. Ta način shranjevanja omogoča, da lahko vedno preverimo, če ima shranjenjena vsebina
isto zgostitev, kot je njeno ime. Lahko tudi shranimo več različic iste datoteke, saj ima vsaka različica
drugačno zgostitev. Zgostitev služi tudi kot kontrola, če je prišlo do kvaritve podatkov, ki so shranjeni v
Git repozitoriju.

1Leta 2017 so raziskovalci iz CWI Amsterdam in Google Research našli prvi praktični primer dveh različnih pdf datotek,
ki imata isto SHA1 zgostitev[4]. Opisan napad so poimenovali SHAttered. Git je zato z verzijo v2.13.0 začel uporabljati
verzijo SHA1, ki je odporna proti napadu SHAttered. Kljub temu razvijalci Gita načrtujejo, da bodo SHA1 postopoma
nadomestili s 256 bitno zgoščevalno funkcijo SHA-256.

2V resnici Git shrani vsebino v datoteko z imenom h3h4 . . . h40 v mapi h1h2, kjer je h1h2h3 . . . h40 zapis H(b) v 16-tiškem
sistemu. Datoteka, katere vsebina ima zgostitev H(b) enako 8dd6d4bdaeff93016bd49474b54a911131759648 bo shranjena v
.git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648. Zavoljo preglednosti bomo v nadaljevanju večrat napačno
zatrjevali, da je ime datoteke enako zgostitvi njene vsebine.

2

https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Content-addressable_storage

4 Datotečna drevesa
V vsebinsko naslovljivo shrambo objektov lahko shranimo vsebino datotek in njihovih prejšnjih različic.
A kako ohranimo informacijo o imenu datotek in drevesni strukturi mape? Git za to ustvari nov tip
objekta drevo (angl. tree), ki hrani preprost seznam imen datotek in naslovov na vsebino datotek v mapi.
Naslov na vsebino datoteke b je seveda zgostitev vsebine H(b).

100644 blob 33476f4951afc28d5ac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1b0fcfc blabla.txt
040000 tree ae247f2a35aadade5863aec2475cf13020304b06 podmapa

Slika 1: Vsebina mape v Gitu je preprost seznam datotek in podmap ter zgostitev njihove vsebine.
Številke na začetku določajo dovoljenja za datoteke po sistemu Posix.

Drevo je preprost seznam v tekstovni datoteki, za katerega lahko prav tako izračunamo zgostitev.
Zgostitev datotečnega drevesa natanko določa tako imena kot tudi vsebino datotek, ki so vsebovane v
mapi. Če se katerakoli datoteka ali njeno ime v mapi spremeni, se bo spremnila tudi njena zgostitev in
posledično zgostitev za drevo. Poleg posameznih datotek, lahko drevo vsebuje tudi poddrevesa. Tako
lahko rekurzivno ustvarimo drevesno podatkovno strukturo, ki zajema mapo z datotekami in podmapami
v poljubni globini.

Poglejmo si primer. Denimo, da imamo v korenski mapi naslednje datoteke in podmape.

bla.txt (vsebina: bla)
blabla.txt (vsebina: blabla)
podmapa

bla.txt (vsebina: bla)

Slika 2: Struktura datotek in podmap, ki jo bomo hranili v Gitu.

Git bo shranil naslednje objekte v vsebinsko naslovljivo shrambo:

• vsebino datoteke bla.txt

bla

v .git/objects/bc/c1382241e267cf790ca6b3afe9fde6dcf1072f

• vsebino datoteke blabal.txt

blabla

v .git/objects/2c/e22b4dc77442103f095503f1205937c1b0fcfc

• seznam datotek v mapi podmapa

100644 blob bcc1382241e267cf790ca6b3afe9fde6dcf1072f bla.txt

v .git/objects/ae/247f2a35aadade5863aec2475cf13020304b06

• seznam datotek v korenski mapi

100644 blob 33476f4951afc28d5ac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1b0fcfc blabla.txt
040000 tree ae247f2a35aadade5863aec2475cf13020304b06 podmapa

v .git/objects/47/3e0bbfc9de64fdca00e611e5666788ddf664ca

3

Z uporabo zgostitve kot kazalca na vsebino, Git vsebino mape postavi v podatkovno strukturo, ki
jo matematično lahko opišemo z usmerjenim grafom. Če je vsebina datotek enaka(npr. bla.txt in
mapa/bla.txt), Git shrani le eno kopijo, ki je dostopna v datoteki z imenom enakim zgostitvi vsebine.
Zato datotečno drevo v Gitu ni nujno predstavljeno kot drevo, ampak kot usmerjen (aciklični) graf 3.

bla.
txt

ma
pa

bla.txt

blabla.txt

bcc138

bla

2ce22b

blabla

ae247f

drevo

473e0b

drevo

Slika 3: Primer datotečnega grafa povezanega z zgostitvami. Zaradi preglednosti bomo v slikah izpisali
le prvih 6 znakov zgostitve.

Posledično lahko vsebino celotne mape opišemo z eno samo zgostitvijo. Če spremenimo vsebino, ime
ali lokacijo datoteke, bo sprememba vplivala na zgostitev spremenjene vsebine in sprememba bo splavala
na površje do zgostitve za korensko mapo. Zgostitev služi tako kot identifikator vsebine, kot tudi kot
kontrolna vsota, ki omogoča detekcijo sprememb.

Opomba 2 Podatkovna struktura objektov v Gitu je podobna Merklejevim drevesom[3]. Postopek graditve
datotečnega drevesa v Gitu je soroden veriženju blokov, ki se uporablja v kriptovalutah.

Ponovimo, kar smo spoznali o Gitu. Git hrani vsebino datotek in datotečno strukturo v vsebinsko
naslovljivi shrambi (v mapi .git/objects). To pomeni, da je referenca na posamezen objekt v Gitu
preprosto zgostitev njegove vsebine in da lahko do določene vsebine dostopamo le, če poznamo njeno
zgostitev. Po drugi strani je vsebina za vse praktične primere določena s svojo zgostitvijo. Tako lahko
enostavno preverimo verodostojnost vsebine, ki je shranjena v Gitu.

5 Zgodovinski graf sprememb
V prejšnjem poglavju smo videli, kako Git hrani vsebino celotne mape in kako zgostitev korenske mape
določa vsebino vseh shranjenih datotek. Zgodovinsko drevo sprememb je preprosta razširitev omenjene
podatkovne strukture.

5.1 Posnetki stanja
Osnovna enota v Gitu je vnos (angl. commit). Vnos je posnetek stanja zabeleženih datotek v trenutku,
ko je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje še metapodatke o avtorju, datumu vnosa in
opisom sprememb. Podobno kot objekt tipa drevo, je tudi vnos objekt v vsebinsko naslovljivi shrambi
in ima določeno zgostitev vnosa. Zgostitev vnosa je natanko določena z vsebino shranjenih datotek in
metapodatkov vnosa.

tree 65c47feec7465e80492620a48206793e078702e0
parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Slika 4: Vnos v Gitu je shranjen v podatkovno shrambo pod imenom, ki je zgostitev vsebine vnosa:
.git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648.

3Teoretično bi lahko dosegli, da bi bili v grafu tudi cikli, a je to zelo malo verjetno in zato to možnost ignoriramo.

4

Vsak vnos je povezan s točno določenim posnetekom vsebine korenskega datotečnega drevesa, ki ga
identificira zgostitev. Poleg tega so posamezni vnosi povezani v usmerjen acikličen graf, ki predstavlja
zgodovino sprememb. Vsak vnos je vozlišče v grafu in izhaja iz enega ali več starševskih vnosov. Izjema
je prvi vnos. Povezave v grafu povezujejo vnose z njihovimi starši.

d93434 2ca420 dd0d98 28782c 710310

3f2922 d2a671

Slika 5: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih
izhaja.

Tudi vnose hrani Git v vsebinsko naslovljivi shrambi pod imenom, ki je enako zgostitvi vnosa. V
shrambi imamo tri vrste objektov: vsebina datotek (blob), datotečna drevesa (tree) in vnose (commit).
Vsi objekti so dostopni, če poznamo njihovo zgostitev in so med seboj povezani v usmerjen aciklični graf.
Zgostitve objektov "na vrhu"natanko določajo vsebino vseh objektov pod njimi. Na vrhu grafa so vnosi,
ki vsebujejo reference na druge vnose in na posnetke korenske mape. Posnetek korenske mape vsebuje
reference na vsebino datotek in posnetke podmap.

starš

bla.txt

bla.txt

blabla.txt

blabla.txt

vsebina (blob) drevesa (tree) vnosi (commit)

bcc138

bla

2ce22b

blabla

33476f

bla!

5e12fg

koren

32e4f1

koren

7e43a1

Prvi vnos

4ef531

Popravi bla.txt

Slika 6: Vsebinsko naslovljiva shramba objektov v Gitu. Naslovi so zgostitve vsebine. Shramba vsebuje
dva vnosa. V prvem vnosu smo dodali dve datoteki bla.txt in blabla.txt, v drugem vnosu pa smo
spremenili le vsebino datotoeke bla.txt.

6 Kazalci: veje in značke
Poleg objektov kot so vnosi, posnetki map in posnetki datotek pozna git še reference. Reference so
preproste datoteke, ki vsebujejo zgostitev za posamezen vnos. Referenc git ne hrani v skladišču objektov,
temveč posebej v mapi .git/refs.

Git pozna dve vrste referenc. Veja (angl. branch) je posebne vrste referenca, ki se premika, ko doda-
jamo nove vnose. Vsakič ko ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni
vnos. Veje uporabljamo za vzdrževanje vzporednih razvojnih linij, ki so med sabo neodvisne. Značka
(angl. tag) je referenca, ki je statična. Za razliko od veje, se oznaka nikoli ne premika samodejno. Zato se
uporablja predvsem za označevanje pomembnih mejnikov v zgodovini na primer verzij posameznih izdaj.

HEAD je posebna referenca, ki kaže na trenutno aktiven vnos. Vnos, na katerega kaže HEAD bo
starševski vnos naslednjeg vnosa, ki ga bomo dodali. Ko spreminjamo datoteke Git najprej postavi
spremenjene datoteke v čakalnico (angl. staging area), ki se imenuje tudi indeks (angl. index). Šele ko
ustvarimo vnos, Git indeks trajno shrani.

Veje in značke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose.
Pomen posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja različne veje
za različne namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production,
development in podobno označujejo različne stopnje razvoja programske opreme, veje s predpono feature

5

main

e23d19 3943eb 98ff21 4e96a1

v-1.0

Slika 7: Veja main in značka v-1.0 sta preprosta kazalca na posamezen vnos.

main

e23d19 3943eb 98ff21 4e96a1

main

v-1.0

Slika 8: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, značka v-1.0 pa ostane tam, kjer
je bila.

označujejo razvoj novih funkcionalnosti. Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git
repozitoriju. Za Git so vse veje in značke zgolj preprosti kazalci na določen vnos.

7 Povzetek
Povzemimo sedaj, kaj smo spoznali o podatkovnem modelu Gita. Git hrani zgodovino sprememb v
vsebinsko naslovljivi shrambi objektov, ki hrani tri vrste objektov:

• blob: vsebina datotek,

• tree: imena vsebovanih datotek in podmap skupaj z njhovimi zgostitvami,

• commit: posnetek stanja projekta v nekem trenutku z metapodatki o avtorju, času in sporočilom.

Naslovi objektov so zgostitve vsebine objekta, zato je zagotovljena verodostojnost shranjenih podat-
kov. Vnosi so povezani v usmerjen aciklični graf, ki opiše zgodovino sprememb. Vsak vnos je določen
z zgostitvijo vnosa (angl. commit hash), ki je 40-mestna heksadecimalna vrednost, izračunana s SHA1.
Zgostitev vnosa je določena na podlagi vsebine vseh datotek, kot tudi metapodatkov vnosa.

Izven shrambe objektov hrani Git še reference na posamezne vnose. Poznamo dve vrsti referenc:

• Veja (angl. branch) je premična referenca, ki kaže na določen vnos v zgodovini in se samodejno
premakne naprej, ko dodajamo nove vnose.

• Oznaka (angl. tag) je statična referenca, ki trajno kaže na določen vnos.

• HEAD je posebna oznaka, ki kaže na trenutno aktiven vnos v delovni kopiji.

Omenimo še dva pojma, ki jih uporabljamo pri delu z Gitom:

6

e23d19 3943eb 98ff21 4e96a1

main

HEAD index

Slika 9: HEAD je referenca na trenutno aktiven vnos. Index vsebuje spremembe, ki bodo zabeležene v
naslednjem vnosu.

• Delovna kopija (angl. workout copy) je mapa v kateri urejamo datoteke, ki jih nato vnesemo v Git.
V delovni kopiji imajo na začetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa
(HEAD). Spremembe, ki jih naaredimo na delovni kopiji lahko zabeležimo v nov vnos.

• Oddaljen repozitorij (angl. remote) je povezava(url) na drug repozitorij (ponavadi na drugem
računalniku), s katerim lahko izmenjujemo vsebino.

8 Git ukazi kot operacije na grafu
Gitov podatkovni model omogoča, da je večina operacij v Gitu obrnljivih. To pomeni, da lahko repozitorij
povrnemo v prejšnje stanje. Večina operacij le dodaja nove vnose in starih ne briše4. Zato so stare različice
datotek vedno na voljo. Git uporabniku daje samozavest, da brez strahu spreminja vsebino, saj se lahko
vedno vrne v času nazaj. Kot bi imel časovni stroj.

Opremljeni z razumevanjem podatkovnega modela Gita, lažje razumemo posamezne operacije, ki jih
Git omogoča. Ukazov ne bom prevajal, ampak jih bom navedel kot jih pozna program git.

git checkout referenca

spremeni datoteke v delovni kopiji tako, da se ujemajo z vnosom, na katerega kaže referenca. Poleg
tega prestavi oznako HEAD na isti vnos. Če je referenca veja, jo nastavi, kot aktivno vejo. Če je referenca
oznaka ali zgostitev vnosa, priedmo v stanje brez aktivne veje (angl. deteached HEAD).

git commit -m "Sporočilo za vnos"

ustvari nov vnos, ki kaže na stanje v čakalnici (angl. staging area ali index). V zgodovinskem grafu
ustvari novo vozlišče, ki je povezano s prejšnjim vnosom. Poleg tega prestavi aktivno vejo in oznako HEAD
na novo ustvarjeni vnos.

git add bla.txt

doda vsebino spremenjene datoteke bla.txt v čakalnico. Ukaz ne spreminja zgodovinskega grafa, pač pa
doda novo vsebino in datotečna drevesa, ki vsebujejo spremembe v shrambo objektov. Vsebina čakalnice
bo zabeležena v naslednjem vnosu.

git pull

pobere vsebino(objekte in reference) iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno.
Shrambi objektov se preprosto doda nove objekte, ki so v oddaljeni veji. Če je lokalna veja prednik
oddaljene, se lokalna veja enostavno prestavi, da kaže na isti vnos, kot oddaljena veja. V nasprotnem
primeru, mora uporabnik posredovati in razrešiti morebitne konflikte.

git push
4Nekatere operacije vnose tudi brišejo (npr. git rebase). Takim operacijam rečemo, da spreminjajo zgodovino. Upo-

rabniki morajo biti pri njihovi uporabi posebej pazljivi, da česa trajno ne zamočijo.

7

potisne novo vsebino na oddaljeni repozitorij. Push deluje obratno kot pull. Ukaz je uspešno izveden le,
če je oddaljena veja predhodnica lokalne veje.

git fetch

pobere novo vsebino (vnose, veje in oznake) iz oddaljenega repozitorija. Pri tem ne more priti do kon-
fliktov, ker git preprosto doda nove objekte v shrambo in obstoječih objektov nikakor ne spreminja.
Oddaljenim vejam in oznakam preprosto doda predpono z imenom oddaljenega repozitorija.

git reset referenca

spremeni kam kaže trenutno izbrana veja. Trenutno izbrano vejo prestavi na isti vnos, na katerega kaže
dana referenca. Ukaz ne spremeni zgodovinskega drevesa, ampak le to, na kateri vnos kaže trenutno
izbrana veja.

git merge referenca

ustvari nov vnos, ki združi dve ločeni veji v eno (trenutno izbrano in referenco). Nov vnos ima dva starša:
vnos na katerega kaže trenutna veja in vnos, na katerega kaže referenca. Če pride do konfliktov, jih
mora uporabnik sam razrešiti, preden se ustvari nov vnos.

git rebase referenca

prestavi vnose v trenutno izbrani veji tako, da so potomci vnosa, na katerega kaže referenca. Med ukazi,
ki smo jih spoznali, je ta ukaz edini, ki lahko povzroči izgubo podatkov. Običajno ukazi le dodajajo nove
vnose in prestavljajo reference. Zato je večina ukazov v Gitu varna, v smislu, da jih lahko kasneje
prekličemo in pridemo nazaj na prejšnje stanje. Ukaz rebase pa spremeni zgodovino in ga ne moremo
preklicati, saj trenutne vnose nadomesti z novimi in stare vnose pobriše5.

9 Trki zgostitev in rojstnodnevni paradoks
Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Če bi imeli dve datoteki z različno vsebino
isto zgostitev, bi Git shranil le eno datoteko in bi prišlo do izgube podatkov. Git se zanaša na to, da je
verjetnost za to izjemno majhna. Kako bi ocenili to verjetnost?

Koliko datotek bi morali shraniti v Git, da bi z znatno verjetnostjo prišlo do trka? Vprašanje je
povezano z rojstnodnevnim problemom. Kako velika naj bo skupina ljudi, da bo vsaj 50% verjetnost,
da imata dve osebi na isti dan rojstni dan? Velikost skupine je presenetljivo majhna(23), zato rojstno-
dnevnei problem imenujemo tudi rojstnodnevni paradoks. Vprašanje zastavimo matematično. Naključno
izberemo n < d števil iz množice {1, 2, . . . , h}, tako da je vsaka izbira enakomerno porazdeljena. Koli-
kšna je verjetnost p(n, h), da bosta vsaj dve števili enaki? Verjetnost p(n, h) izračunamo elementarno z
verjetnostjo nasprotnega dogodka:

1− p(n, h) =
h · (h− 1) · · · (h− n+ 1)

hn
=

n−1∏
k=1

(
1− k

h

)
. (1)

Če izraz logaritmiramo, dobimo

log(1− p(n, h)) =

n−1∑
k=1

log(1− k

h
) < −

n−1∑
k=1

k

h
=

− (n(n− 1))

2h
. (2)

Res! Logaritem je konveksna funkcija, zato so vrednosti manjše od vrednosti na tangenti log(1− k
h) =

log(1− x) < x = k
h .

Od tod izpeljemo oceno za p(n, h)

p(n, h) > 1− e
−(n(n−1))

2h ≈ 1− e−
n2

2h . (3)

Za vrednosti 1 ≪ n ≪ h je 1− e−
n2

2h tudi dobra aproksimacija za p(n, h).
5Obstaja enostaven način, kako rebase izvedemo tako, da ga lahko kasneje prekličemo. Na vnos, ki ga želimo prestaviti

z rebase, preprosto postavimo novo vejo ali oznako. To povzroči, da se stari vnosi ne pobrišejo, ko se izvede ukaz rebase.

8

Da bi odgovorili kako odporna je zgoščevalna funkcija na morebitne trke, moramo rešiti obratno
nalogo: največ koliko števil n(p, d) lahko izberemo, da bo verjetnost pojava dveh enakih števil manjša od
p ∈ [0, 1]? Natančen odgovor na to vprašanje ni tako preprost [1]. Lahko pa uporabimo oceno (3) in čez
palec ocenimo vrednost n(p, h):

−n2 ≈ log(1− p) ⇒
n(p, h) ≈

√
2h log(1

1−p) ≈
√
2h.

(4)

Funkcija
√
log(1

1−p) zelo počasi narašča, ko se p približuje 1, zato jo lahko zanemarimo. Če je

zgoščevalna funkcija 160 bitna, kot na primer SHA1, je n ≈
√
2160 ≈ 280. Znatna verjetnost, da pride do

trka zgostitev, bi se pojavila, ko bi shranili 280 različnih verzij datotek v Git. Raziskovalci, ki so razvili
napad SHAttered, so se posebej potrudili in so potrebovali “zgolj” približno 263 primerov, da so prišli do
trka.

10 Zaključek
Spoznali smo, kako deluje Git in s katerimi matematičnimi pojmi lahko opišemo njegov podatkovni model.
Upam, da boste s tem znanjem bolj samozavestno uporabljali Git. Opis dela z Gitom presega namen
tega dokumenta, zato vas raje usmerim na uradno dokumentacijo:

https://git-scm.com/cheat-sheet
Pri pisanju tega članka sem sevada uporabljal Git. V javno dostopnem repozitoriju [5] si lahko

ogledate celotno zgodovino nastajanja tega članka. Pri pripravi dokumenta sem uporabil Gemini 3, a
sem vse odgovore skrbno preveril in uredil po svoje.

Literatura
[1] David Brink. A (probably) exact solution to the Birthday Problem. The Ramanujan Journal,

28(2):223–238, June 2012. doi:10.1007/s11139-011-9343-9.

[2] Scott Chacon and Ben Straub. 10.2 Git Internals - Git Objects. In Pro Git. URL: https://git-scm.
com/book/en/v2/Git-Internals-Git-Objects.

[3] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In Carl Po-
merance, editor, Advances in Cryptology — CRYPTO ’87, pages 369–378, Berlin, Heidelberg, 1988.
Springer. doi:10.1007/3-540-48184-2_32.

[4] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The First Collision
for Full SHA-1. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO
2017, pages 570–596, Cham, 2017. Springer International Publishing.

[5] Martin Vuk. git-intro. URL: https://git.fri.uni-lj.si/martin.vuk/git-intro.

9

https://git-scm.com/cheat-sheet
https://git.fri.uni-lj.si/martin.vuk/git-intro
https://doi.org/10.1007/s11139-011-9343-9
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://doi.org/10.1007/3-540-48184-2_32
https://git.fri.uni-lj.si/martin.vuk/git-intro

	Kaj je Git?
	Podatkovno skladišče
	Zgoščevalna funkcija
	Datotečna drevesa
	Zgodovinski graf sprememb
	Posnetki stanja

	Kazalci: veje in značke
	Povzetek
	Git ukazi kot operacije na grafu
	Trki zgostitev in rojstnodnevni paradoks
	Zaključek

