
bar

foo

bar

foo

ti
m

e

0a3d36Initial commit

ce2d1d

0459b3

b62527

Merge commit
commit with two parents

93f4ee

7b67bd

2e4289

7ed6de

aa083c

3f28d1

2e9986

main

hotfix HEAD

v-2.0

v-1.0

v-1.1

Version history

Directed Acyclic Graph (DAG)

describes version history.

Commits are nodes in DAG.

Commits are connected with

their parents.

Branches
references that move

along when

commiting changes

Tags
references that don’t

move

Staging area (index)
filesystem snapshot that

will be commited in the

next commit

Head
reference to current branch

parent to the next commit

Commit
file tree snapshot with

metadata in object store

commit hash: aa083c

tree 43e2f7

parent 93f4ee

author Martin Vuk

committer MV <mv...

Add bla

Content addressable object store

.git/objects

aa083c

Add bla

93f4ee

Merge commit

43e2f7

tree

e05dcd

tree

cb48cd

bla bla

077231

lorem

d1bc32

bla

parent

Git za matematike

Naučili se bomo, kako Git deluje. Spoznali bomo, da so v ozadju Gita vsebinsko naslovljiva shramba
podatkov, Merklejeva drevesa in usmerjeni aciklični grafi.

Cilj: Razumeti logiko Gita. Ko razumemo, kaj je v ozadju, lahko operacije, kot so merge, rebase in reset

preporsto razložimo s preoblikovanjem grafa in premikanjem kazalcev po grafu.

Čas branja: 30 min

1. Kaj je Git?

Git je kot časovni stroj za datoteke. Uporabniku omogoča, da vidi pretekle različice datotek,

sprememinja datoteke, brez skrbi, da bi kaj pokvaril in datoteke deli z drugimi. Poleg časovnega stroja

je Git razpršeno skladišče datotek. Omogoča, da datoteke hkrati ureja več uporabnikov na različnih

računalnikih in kasneje spremembe združi.

Git hrani vsebino direktorija z datotekami in celotno zgodovino različic datotek iz preteklosti. Za vsako

različico hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno

različico. Vse te imformacije dajejo podroben pregled nad zgodovino sprememb.

Sisteme, ki omogočajo hranjenje preteklih različic datotek, imenujemo sistemi za nadzor različic (angl.

version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management

(SCM)).

Poleg nadzora različic Git omogoča hkratno spreminjanje datotek več uporabnikov na različnih

računalnikih. Zato je Git distribuiran sistem za nadzor različic (angl. Distributed Version Control System

(DVCS)).

V nadaljevanju bomo obravnavali nasledjne teme:

• Podatkovno skladišče: Kako Git uporablja zgoščevalno funkcijo in Merklejeva drevesa za hranjenje

posnetkov vsebine direktorija.

• Zgodovina sprememb: Kako zgodovino predstavimo z usmerjenim acikličnim grafom, v katerem so

vozlišča različice in ki povezuje različice z njihovimi neposrednimi predhodniki.

• Reference: Kako preproste reference (kazalci) na vsebino omogočajo bliskovito preklaplanje med

različicami in preprečijo popolno zmešnjavo, ko več ljudi hkrati spreminja iste datoteke.

2. Podatkovno skladišče

2.1. Git repozitorij

Git repozitorij je direktorij v katerem je poddirektorij .git, ki vsebuje vso zgodovino sprememb in ostale

podatke, ki jih Git potrebuje.

2.2. Vnos: posnetek stanja

Osnovna enota v Gitu je vnos (angl. commit). Vnos je posnetek stanja zabeleženih datotek v trenutku, ko

je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje še metapodatke o avtorju, datumu vnosa in

opisom sprememb. Vsakemu vnosu je prirejena zgoščena vrednost vnosa (angl. hash), ki je 40-mestna

heksadecimalna vrednost, izračunana s SHA-1, in je natanko določena z vsebino shranjenih datotek in

metapodatkov vnosa.

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

Git obravnava podatke v repozitoriju kot posnetke stanja in ne zgolj kot zaporedje sprememb. To je

ena glavnih razlik med Gitom in predhodnimi sistemi za upravljanje različic (glej Kaj je Git?).

Vnose in vsebino datotek hrani Git v skladišču objektov. Do objektov v skladišču lahko dostopamo, če

poznamo njihovo zgoščeno vrednost. Objekti, ki jih Git hrani v skladišču so vnosi, posnetki direktorijev

in posnetki posameznih datotek.

zgoščena vrednost: 8dd6d4bdaeff93016bd49474b54a911131759648

tree 65c47feec7465e80492620a48206793e078702e0

parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d

author MV <mv@example.com> 1765235698 +0100

committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Tabela 1: Primer vnosa v Gitu. Vnos vsebuje zgoščeno vrednost posnetka direktorija(tree), zgoščeno

vrednost starševskega vnosa (parent) in metapodatke. Tudi sam vnos je natančno določen z zgoščeno

vrednostjo.

Posnetki direktorijev so v Gitu posebne vrste objekti tipa tree. Vsebujejo zgoščene vrednosti in

metapodatke o datotekah in direktorijih, ki jih vsebuje.

zgoščena vrednost: d934342ca420dd0d9828782c7103103f2922d2a6

100644 blob 76018072e09c5d31c8c6e3113b8aa0fe625195ca bar.txt

100644 blob ba0e162e1c47469e3fe4b393a8bf8c569f302116 foo.txt

040000 tree 3b8bfca88b2cc4127ce5909eb3a7395e8b5f2b6a podmapa

Tabela 2: Primer posnetka direktorija v Gitu (objekt tipa tree). Posnetek vsebuje zgoščene vrednosti

datotek in direktorija, ki jih vsebuje. Uporaba zgoščenih vrednosti natančno določa vsebino posnetka

direktorija.

Skladišča objektov v Gitu je skladišče vsebinsko naslovljivih objektov. Dostop do objekta je mogoč, če

poznamo zgoščeno vrednost njegove vsebine. To pomeni, da je referenca na posamezen objekt v Gitu

preprosto zgoščena vrednost(angl. hash) vsebine tega objekta. Po drugi strani je vsebina objekta

določena z njegovo zgoščeno vrednostjo. To pomeni, da lahko enostavno preverimo verodostojnost

vsebine, ki je shranjena v Gitu. Git hrani skladišče objektov v direktoriju .git/objects.

3. Zgodovinski graf sprememb

Posamezni vnosi so povezani v usmerjen acikličen graf (DAG), ki predstavlja zgodovino sprememb.

Vsak vnos je vozlišče v grafu. Vsak vnos izhaja iz enega ali več starševskih vnosov. Izjema je prvi vnos.

Povezave v grafu povezujejo vnose z njihovimi starši.

d93434 2ca420 dd0d98 28782c 710310

3f2922 d2a671

Slika 1: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih izhaja.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://en.wikipedia.org/wiki/Content-addressable_storage

4. Kazalci: veje in značke

Poleg objektov kot so vnosi, posnetki direktorijev in posnetki datotek pozna Git še reference. Reference so

kazalci z določenim imenom na posamezen vnos.

main

e23d19 3943eb 98ff21 4e96a1

v-1.0

Slika 2: Veja (angl. branch) ali značka(angl. tag) je preprost kazalec na posamezen vnos(angl. commit).

Referenc Git ne hrani v skladišču objektov, temveč posebej v direktoriju .git/refs. Zato so reference

vezane na posamezen repozitorij in se lahko razlikujejo med različnimi kloni določenega repozitorija.

Veja (angl. branch) je posebne vrste referenca, ki se premika, ko dodajamo nove vnose. Vsakič ko

ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni vnos.

Značka (angl. tag) je referenca, ki je statična in se ne premika več, ko jo enkrat ustvarimo.

main

e23d19 3943eb 98ff21 4e96a1

main

v-1.0

Slika 3: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, značka v-1.0 pa ostane tam, kjer je

bila.

Veje in značke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose. Pomen

posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja različne veje za različne

namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production, development

in podobno označujejo različne stopnje razvoja programske opreme, veje s predpono feature-

označujejo razvoj novih funkcionalnosti.

Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git repozitoriju. Za Git so vse veje in značke

zgolj preprosti kazalci na določen vnos.

HEAD je posebna referenca, ki kaže na trenutno aktiven vnos. Vnos, na katerega kaže HEAD bo starševski

vnos naslednjeg vnosa, ki ga bomo dodali.

e23d19 3943eb 98ff21 4e96a1

main

HEAD index

Slika 4: HEAD je referenca na trenutno aktiven vnos/vejo.

4.1. Delo z Git

Opis dela z Gitom presega namen tega dokumenta. Zato vas raje preusmerimo na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

4.2. Povzetek

Samostalniki:

• Vnos (angl. commit) je posnetek trenutnega stanja projekta, shranjen kot vozlišče v zgodovinskem

grafu (DAG), ki vsebuje spremembe datotek ter metapodatke (avtor, čas, sporočilo).

• Zgoščena vrednost vnosa (angl. commit hash) je 40-mestna heksadecimalna vrednost, izračunana s

SHA-1, ki enolično identificira vnos na podlagi njegove vsebine.

• Veja (angl. branch) je premična oznaka, ki kaže na določen vnos v zgodovini in se samodejno premakne

naprej, ko dodajamo nove vnose. Veje omogočajo vzporedne razvojne linije z različnimi spremembami.

• Oznaka (angl. tag) je statična oznaka, ki trajno kaže na določen vnos. Za razliko od veje se oznaka,

nikoli ne premika samodejno, zato se uporablja predvsem za označevanje pomembnih točk v zgodovini,

kot so izdaje ali stabilne verzije.

• Delovna kopija (angl. workout copy) je direktorij v katerem urejamo datoteke, ki jih nato vnesemo v

Git. V delovni kopiji imajo na začetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa

(HEAD). Spremembe, ki jih naaredimo na delovni kopiji lahko zabeležimo v nov vnos.

• Oddaljen repozitorij (angl. remote) je povezava(url) na oddaljen repozitorij, s katerim izmenjujemo

vsebino.

Glagoli (akcije):

• Checkout prenese vsebino vnosa v delovno kopijo: git checkout neka-veja

• Commit ustvari nov vnos: git commit -m 'Sporočilo'

• Add doda vsebino, ki bo v naslednjem vnosu: git add dodaj_me.txt

• Pull poberi vsebino iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno: git pull

• Push potisni lokalne vnose na oddaljeni repozitorij in uskladi oddaljeno vejo z lokalno: git push

• Fetch pobere nove vnose, veje in oznake iz oddaljenega repozitorija: git fetch

• Reset spremeni kam kaže trenutno izbrana veja: git reset a239f9e91

• Merge ustvari nov vnos, ki združi dve ločeni veji v eno: git merge main

• Rebase prestavi vnose v trenutno izbrani veji na izbran vnos: git rebase main

Opis dela z Gitom presega namen tega dokumenta. Zato vas raje preusmerimo na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

Pri pripravi dokumenta sem uporabil Gemini 3. Vse odgovore sem preveril in uredil po svoje.

Sledi še skica, ki povzame vse komponente Git repozitorija.

https://git-scm.com/cheat-sheet
https://git-scm.com/cheat-sheet

bar

foo

bar

foo

ti
m

e

0a3d36Initial commit

ce2d1d

0459b3

b62527

Merge commit
commit with two parents

93f4ee

7b67bd

2e4289

7ed6de

aa083c

3f28d1

2e9986

main

hotfix HEAD

v-2.0

v-1.0

v-1.1

Version history

Directed Acyclic Graph (DAG)

describes version history.

Commits are nodes in DAG.

Commits are connected with

their parents.

Branches
references that move

along when

commiting changes

Tags
references that don’t

move

Staging area (index)
filesystem snapshot that

will be commited in the

next commit

Head
reference to current branch

parent to the next commit

Commit
file tree snapshot with

metadata in object store

commit hash: aa083c

tree 43e2f7

parent 93f4ee

author Martin Vuk

committer MV <mv...

Add bla

Content addressable object store

.git/objects

aa083c

Add bla

93f4ee

Merge commit

43e2f7

tree

e05dcd

tree

cb48cd

bla bla

077231

lorem

d1bc32

bla

parent

	1. Kaj je Git?
	2. Podatkovno skladišče
	2.1. Git repozitorij
	2.2. Vnos: posnetek stanja

	3. Zgodovinski graf sprememb
	4. Kazalci: veje in značke
	4.1. Delo z Git
	4.2. Povzetek

