BRANCHES
references that move
along when

commiting changes

Version history

Directed Acyclic Graph (DAG)
describes version history.
Commits are nodes in DAG.
Commits are connected with
their parents.

time

A 7b67bd )

__________________________________)

references that don’t

move

Merge commit
commit with two parents

Z
N

cb48cd

bla bla %
%

e05dcd
y tree

43e2f7
tree

077231

d1bc32
bla

I
dooia

Content addressable object store

' STAGING AREA (INDEX)
. filesystem snapshot that

! |

1
! |
i will be commited in the |
! 1
1

! next commit

HeAD
reference to current branch

parent to the next commit

CommiIT
file tree snapshot with
metadata in object store

commit hash: aa®83c

tree 43e2f7

parent 93f4ee
author Martin Vuk
committer MV <mv...

Add bla

.git/objects :

I aa083c :

) Add bla :
93f4ee

% 1

Merge commit




Git za matematike

Naucili se bomo, kako Git deluje. Spoznali bomo, da so v ozadju Gita vsebinsko naslovljiva shramba
podatkov, Merklejeva drevesa in usmerjeni acikli¢ni grafi.

Cilj: Razumeti logiko Gita. Ko razumemo, kaj je v ozadju, lahko operacije, kot so merge, rebase in reset
preporsto razlozimo s preoblikovanjem grafa in premikanjem kazalcev po grafu.

Cas branja: 30 min
1. Kaj je Git?

Git je kot casovni stroj za datoteke. Uporabniku omogoca, da vidi pretekle razlic¢ice datotek,
sprememinja datoteke, brez skrbi, da bi kaj pokvaril in datoteke deli z drugimi. Poleg casovnega stroja
je Git razprseno skladisce datotek. Omogoca, da datoteke hkrati ureja ve¢ uporabnikov na razli¢nih
racunalnikih in kasneje spremembe zdruzi.

Git hrani vsebino direktorija z datotekami in celotno zgodovino razlic¢ic datotek iz preteklosti. Za vsako
razli¢ico hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno
razli¢ico. Vse te imformacije dajejo podroben pregled nad zgodovino sprememb.

Sisteme, ki omogocajo hranjenje preteklih razli¢ic datotek, imenujemo sistemi za nadzor razlicic (angl.
version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management
(SCM)).

Poleg nadzora razlic¢ic Git omogoca hkratno spreminjanje datotek ve¢ uporabnikov na razli¢nih
racunalnikih. Zato je Git distribuiran sistem za nadzor razlicic (angl. Distributed Version Control System
(DVCS)).

V nadaljevanju bomo obravnavali nasledjne teme:

« Podatkovno skladisce: Kako Git uporablja zgoscevalno funkcijo in Merklejeva drevesa za hranjenje
posnetkov vsebine direktorija.

« Zgodovina sprememb: Kako zgodovino predstavimo z usmerjenim acikli¢nim grafom, v katerem so
vozlisca razlicice in ki povezuje razli¢ice z njihovimi neposrednimi predhodniki.

+ Reference: Kako preproste reference (kazalci) na vsebino omogocajo bliskovito preklaplanje med
razli¢icami in preprecijo popolno zmesnjavo, ko ve¢ ljudi hkrati spreminja iste datoteke.

2. Podatkovno skladisce

2.1. Git repozitorij

Git repozitorij je direktorij v katerem je poddirektorij .git, ki vsebuje vso zgodovino sprememb in ostale
podatke, ki jih Git potrebuje.

2.2. Vnos: posnetek stanja

Osnovna enota v Gitu je vnos (angl. commit). Vnos je posnetek stanja zabelezenih datotek v trenutku, ko
je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje $e metapodatke o avtorju, datumu vnosa in
opisom sprememb. Vsakemu vnosu je prirejena zgos$cena vrednost vnosa (angl. hash), ki je 40-mestna
heksadecimalna vrednost, izratunana s SHA-1, in je natanko dolo¢ena z vsebino shranjenih datotek in
metapodatkov vnosa.


https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

Git obravnava podatke v repozitoriju kot posnetke stanja in ne zgolj kot zaporedje sprememb. To je
ena glavnih razlik med Gitom in predhodnimi sistemi za upravljanje razli¢ic (glej Kaj je Git?).

Vnose in vsebino datotek hrani Git v skladis¢u objektov. Do objektov v skladis¢u lahko dostopamo, e
poznamo njihovo zgosceno vrednost. Objekti, ki jih Git hrani v skladi$¢u so vnosi, posnetki direktorijev
in posnetki posameznih datotek.

zgoscena vrednost: 8dd6d4bdaeff93016bd49474b54a911131759648

tree 65c47feec7465e80492620a48206793e078702e0
parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Tabela 1: Primer vnosa v Gitu. Vnos vsebuje zgo$ceno vrednost posnetka direktorija(t ree), zgos¢eno
vrednost starSevskega vnosa (parent) in metapodatke. Tudi sam vnos je natan¢no dolocen z zgosceno
vrednostjo.

Posnetki direktorijev so v Gitu posebne vrste objekti tipa tree. Vsebujejo zgoscene vrednosti in
metapodatke o datotekah in direktorijih, ki jih vsebuje.

zgos$cena vrednost: d934342ca420dd0d9828782c710310312922d2a6

100644 blob 76018072e09c5d31c8c6e3113b8aalfe625195¢ca bar.txt
100644 blob babel62elc47469e3fe4b393a8bf8c569f302116 foo. txt
040000 tree 3b8bfca88b2cc4127ce5909eb3a7395e8b5f2b6ba podmapa

Tabela 2: Primer posnetka direktorija v Gitu (objekt tipa tree). Posnetek vsebuje zgoscene vrednosti
datotek in direktorija, ki jih vsebuje. Uporaba zgo$cenih vrednosti natan¢no dolo¢a vsebino posnetka
direktorija.

Skladisc¢a objektov v Gitu je skladisce vsebinsko naslovljivih objektov. Dostop do objekta je mogo¢, ce
poznamo zgosceno vrednost njegove vsebine. To pomeni, da je referenca na posamezen objekt v Gitu
preprosto zgoscena vrednost(angl. hash) vsebine tega objekta. Po drugi strani je vsebina objekta
dolocena z njegovo zgosceno vrednostjo. To pomeni, da lahko enostavno preverimo verodostojnost
vsebine, ki je shranjena v Gitu. Git hrani skladis¢e objektov v direktoriju .git/objects.

3. Zgodovinski graf sprememb

Posamezni vnosi so povezani v usmerjen aciklicen graf (DAG), ki predstavlja zgodovino sprememb.
Vsak vnos je vozlisée v grafu. Vsak vnos izhaja iz enega ali vec starSevskih vnosov. Izjema je prvi vnos.

28782c

Povezave v grafu povezujejo vnose z njihovimi starsi.

dd0d9s8

710310

312922

d2a671

Slika 1: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih izhaja.


https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://en.wikipedia.org/wiki/Content-addressable_storage

4. Kazalci: veje in znacke

Poleg objektov kot so vnosi, posnetki direktorijev in posnetki datotek pozna Git Se reference. Reference so

kazalci z dolo¢enim imenom na posamezen vnos.
% main )

~

e23d19 3943eb 98ff21 4e96al

<

v-1.0
Slika 2: Veja (angl. branch) ali znacka(angl. tag) je preprost kazalec na posamezen vnos(angl. commit).

Referenc Git ne hrani v skladis¢u objektov, temve¢ posebej v direktoriju .git/refs. Zato so reference
vezane na posamezen repozitorij in se lahko razlikujejo med razli¢nimi kloni dolo¢enega repozitorija.

Veja (angl. branch) je posebne vrste referenca, ki se premika, ko dodajamo nove vnose. Vsaki¢ ko
ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni vnos.

Znacka (angl. tag) je referenca, ki je stati¢na in se ne premika ve¢, ko jo enkrat ustvarimo.

main > main )
e23d19 3943eb 98ff21 4e96al

=

v-1.0

Slika 3: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, znacka v-1.0 pa ostane tam, Kkjer je
bila.

Veje in znacke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose. Pomen
posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja razli¢ne veje za razli¢ne
namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production, development
in podobno oznacujejo razli¢ne stopnje razvoja programske opreme, veje s predpono feature-
oznacujejo razvoj novih funkcionalnosti.

Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git repozitoriju. Za Git so vse veje in znacke
zgolj preprosti kazalci na dolocen vnos.

HEAD je posebna referenca, ki kaze na trenutno aktiven vnos. Vnos, na katerega kaze HEAD bo starSevski
vnos naslednjeg vnosa, ki ga bomo dodali.




€23d19 3943eb 98Ff21 K- 4eQ6al |

) HEAD ) index |

Slika 4: HEAD je referenca na trenutno aktiven vnos/vejo.

4.1. Delo z Git

Opis dela z Gitom presega namen tega dokumenta. Zato vas raje preusmerimo na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

4.2. Povzetek

Samostalniki:

Vnos (angl. commit) je posnetek trenutnega stanja projekta, shranjen kot vozlis¢e v zgodovinskem
grafu (DAG), ki vsebuje spremembe datotek ter metapodatke (avtor, ¢as, sporocilo).

Zgoscena vrednost vnosa (angl. commit hash) je 40-mestna heksadecimalna vrednost, izrac¢unana s
SHA-1, ki enoli¢no identificira vnos na podlagi njegove vsebine.

Veja (angl. branch) je premi¢na oznaka, ki kaZe na dolofen vnos v zgodovini in se samodejno premakne
naprej, ko dodajamo nove vnose. Veje omogocajo vzporedne razvojne linije z razli¢nimi spremembami.
Oznaka (angl. tag) je staticna oznaka, ki trajno kaze na dolocen vnos. Za razliko od veje se oznaka,
nikoli ne premika samodejno, zato se uporablja predvsem za oznacevanje pomembnih tock v zgodovini,
kot so izdaje ali stabilne verzije.

Delovna kopija (angl. workout copy) je direktorij v katerem urejamo datoteke, ki jih nato vnesemo v
Git. V delovni kopiji imajo na zacetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa
(HEAD). Spremembe, ki jih naaredimo na delovni kopiji lahko zabeleZimo v nov vnos.

Oddaljen repozitorij (angl. remote) je povezava(url) na oddaljen repozitorij, s katerim izmenjujemo
vsebino.

Glagoli (akcije):

Checkout prenese vsebino vnosa v delovno kopijo: git checkout neka-veja

Commit ustvari nov vnos: git commit -m 'Sporocilo’

Add doda vsebino, ki bo v naslednjem vnosu: git add dodaj me.txt

Pull poberi vsebino iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno: git pull
Push potisni lokalne vnose na oddaljeni repozitorij in uskladi oddaljeno vejo z lokalno: git push
Fetch pobere nove vnose, veje in oznake iz oddaljenega repozitorija: git fetch

Reset spremeni kam kaZe trenutno izbrana veja: git reset a239f9e91

Merge ustvari nov vnos, ki zdruZzi dve loceni veji v eno: git merge main

Rebase prestavi vnose v trenutno izbrani veji na izbran vnos: git rebase main

Opis dela z Gitom presega namen tega dokumenta. Zato vas raje preusmerimo na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

Pri pripravi dokumenta sem uporabil Gemini 3. Vse odgovore sem preveril in uredil po svoje.

Sledi se skica, ki povzame vse komponente Git repozitorija.


https://git-scm.com/cheat-sheet
https://git-scm.com/cheat-sheet

BRANCHES
references that move
along when

commiting changes

Version history

Directed Acyclic Graph (DAG)
describes version history.
Commits are nodes in DAG.
Commits are connected with
their parents.

time

A 7b67bd )

__________________________________)

references that don’t

move

Merge commit
commit with two parents

Z
N

cb48cd

bla bla %
%

e05dcd
y tree

43e2f7
tree

077231

d1bc32
bla

I
dooia

Content addressable object store

' STAGING AREA (INDEX)
. filesystem snapshot that

! |

1
! |
i will be commited in the |
! 1
1

! next commit

HeAD
reference to current branch

parent to the next commit

CommiIT
file tree snapshot with
metadata in object store

commit hash: aa®83c

tree 43e2f7

parent 93f4ee
author Martin Vuk
committer MV <mv...

Add bla

.git/objects :

I aa083c :

) Add bla :
93f4ee

% 1

Merge commit




	1. Kaj je Git?
	2. Podatkovno skladišče
	2.1. Git repozitorij
	2.2. Vnos: posnetek stanja

	3. Zgodovinski graf sprememb
	4. Kazalci: veje in značke
	4.1. Delo z Git
	4.2. Povzetek


