Matemati¢ni pogled na Git

Martin Vuk
14. januar 2026

Povzetek

Git je program, ki omogoca vodenje zgodovine razli¢ic datotek v neki mapi(direktoriju). V glav-
nem se uporablja za upravljanje z izvorno kodo pri razvoju ra¢unalniskih programov. Mnogi med nami
pa ga uporabljajo tudi pri pisanju besedil v BTEX-u. Poleg tega, da Git hrani zgodovino sprememb,
tudi olajSa zdruZevanje sprememb, ko ve¢ ljudi hkrati ureja iste datoteke. Ogledali si bomo, kako
Git deluje. Opisali bomo, kako Git uporabi zgoscevalne funkcije, Merklejeva drevesa in usmerjene
acikliéne grafe, da shrani zgodovino razli¢ic in olajSa hkratno urejanje vsebine. Matemati¢ni model,
ki ga Git uporablja je v resnici zelo preprost in njegovo razumevanje nas lahko resi marsikatere zagate,
ki nastane med njegovo uporabo.

1 Kaj je Git?

Git| je kot casovni stroj za datoteke. Uporabniku omogoca, da vidi pretekle razlicice datotek, spreminja
datoteke, brez skrbi, da bi kaj pokvaril in jih deli z drugimi. Poleg ¢asovnega stroja je Git tudi razprseno
skladisce datotek. Omogoca, da datoteke hkrati ureja ve¢ uporabnikov na razli¢nih ra¢unalnikih in kasneje
spremembe zdruZi.

Git hrani vsebino mape z datotekami in celotno zgodovino razli¢ic datotek iz preteklosti. Za vsako
razli¢ico hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno
razli¢ico. Vse te imformacije dajejo podroben pregled nad zgodovino sprememb.

Sisteme, ki omogoc¢ajo hranjenje preteklih razli¢ic datotek, imenujemo sistemi za nadzor razli¢ic (angl.
version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management
(SCM)). Poleg nadzora razli¢ic Git omogo¢a hkratno spreminjanje datotek ve¢ uporabnikov na razli¢nih
rac¢unalnikih. Zato je Git distribuiran sistem za nadzor razli¢ic (angl. Distributed Version Control System

(DVCS)).

Opomba 1 Ljudje pogosto mesajo Git in GitHub, ki pa nista eno in isto. Git je program, ki si ga lahko
vsakdo namesti in poganja na svojem racunalniku. Program Git je ustvaril Linus Torvalds, da bi laZje
upravljal z izvorno kodo za jedro operacijskega sistema Linux. GitHub je javno spletisce, ki je namengjeno
skladiséenju Git repozitorijev.

V nadaljevanju si bomo ogledali, kako Git uporablja zgosc¢evalno funkcijo| (angl. hash function) in
posplositev Merklejevih dreves za hranjenje posnetkov vsebine mape. Kako zgodovino sprememb pred-
stavimo z usmerjenim aciklicnim grafom, v katerem so vozlis¢a razli¢ice, povezave pa povezejo razli¢ice
z njihovimi neposrednimi predhodniki in kako preproste reference (kazalci) na vsebino omogocajo bli-
skovito preklaplanje med razli¢icami in preprecijo popolno zmesnjavo, ko ve¢ ljudi hkrati spreminja iste
datoteke?

2 Podatkovno skladiscée

Ko ustvarimo nov Git repozitorij, Git ustvari podmapo z imenom .git z vsemi podatki, ki jih potrebuje.
V mapi .git se hranijo razli¢ne stvari:

e vsebina datotek, ki smo jih dodali v repozitorij,
e drevesna struktura korenske mape, ki jo hranimo v repozitoriju,
e posnetki stanja v razliénih trenutkih s podatki o avtoju, datumu in opisu sprememb,

e kazalci na posamezne posnetke stanja.

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

Git repozitorij je vsaka mapa, ki vsebuje podmapo .git z zgoraj navedenimi podatki. Kako Git hrani
podatke bomo spoznali v nadaljevanju, podrobnosti pa si lahko preberete v knjigi Pro Git [2].

3 Zgoscevalna funkcija

Git ne shranjuje datotek z obi¢ajnimi imeni, ampak za ime uporabi 160 bitno stevilo (40 mestno Stevilo v
16-tiskem zapisu), ki ga izra¢una iz vsebine datoteke. Git za izra¢un imena uporabi zgo$céevalno funkcijo.
Naj bo B mnozica vseh moznih podatkovnih nizov(besedil), n-bitna zgosc¢evalna funkcija je funkcija

H:B—{0,1,...,2" =1},

ki vsakemu besedilu b priredi n-bitno vrednost H(b). Vrednosti zgos¢evalne funkcije H(b) pravimo zgo-
stitev vsebine b (angl. hash). Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Kaj pa ¢e
imata dve razli¢ni vsebini isto zgostitev? Funkcija H ni injektivna, saj je mnoZica nizov, bistveno vecja
od mnozice zgostitev. To pomeni, da imata lahko dve razliéni datoteki enako zgostitev. Ce se to zgodi,
reCemo, da pride do trka zgostitve. V primeru trka zgostitve bi Git shranil le eno datoteko, za drugo
pa bi predpostavil da je Ze shranjena. Zato je funkcija H izbrana tako, da sprememba enega samega
bita v besedilu b € B spremeni vrednost H(b) in je porazdelitev vrednosti H(b) ¢im bliZje enakomerni
porazdelitvi. To pomeni, da so vse vrednosti H(b) pribliZno enako verjetne. Na ta nafin zmanjSamo
verjetnost trka (glej poglavje E[) Verjetnost trka je izjemno majhna, zato Git lahko predpostavi, da je
niz b enoli¢no dolocen z njegovo zgostitvijo H(b). Git uporablja 160 bitno zgoscevalno funkcijo SHA1, ki
se je uporabljala v kriptograﬁjﬂ

Ko datoteko z vsebino b zabelezimo v Git repozitorij, Git izra¢una zgostitev vsebine H () in jo shrani
v datoteko z imenom H(b) v .git/objectsﬂ Vsebina b je tako vedno dostopna pod imenom, ki je
enako njeni zgostitvi H(b). Tako dobimo vsebinsko naslovljivo shrambo objektov, ki je ena od bistvenih
znalilnosti Gita. Ta nacin shranjevanja omogoca, da lahko vedno preverimo, ¢e ima shranjenjena vsebina
isto zgostitev, kot je njeno ime. Lahko tudi shranimo vec razli¢ic iste datoteke, saj ima vsaka razli¢ica
drugacno zgostitev. Zgostitev sluzi tudi kot kontrola, ¢e je prilo do kvaritve podatkov, ki so shranjeni v
Git repozitoriju.

4 Datotec¢na drevesa

V vsebinsko naslovljivo shrambo objektov lahko shranimo vsebino datotek in njihovih prejsnjih razlicic.
A kako ohranimo informacijo o imenu datotek in drevesni strukturi mape? Git za to ustvari nov tip
objekta drevo (angl. tree), ki hrani preprost seznam imen datotek in naslovov na vsebino datotek v mapi.
Naslov na vsebino datoteke b je seveda zgostitev vsebine H (b).

100644 blob 33476f4951afc28d5ac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103£095503£1205937c1b0fcfc blabla.txt
040000 tree ae247f2a35aadadeb863aec2475cf13020304b06 podmapa

Slika 1: Vsebina mape v Gitu je preprost seznam datotek in podmap ter zgostitev njihove vsebine.
Stevilke na zacetku dolo¢ajo dovoljenja za datoteke po sistemu Posix.

Drevo je preprost seznam v tekstovni datoteki, za katerega lahko prav tako izra¢unamo zgostitev.
Zgostitev datotecnega drevesa natanko dolo¢a tako imena kot tudi vsebino datotek, ki so vsebovane v
mapi. Ce se katerakoli datoteka ali njeno ime v mapi spremeni, se bo spremnila tudi njena zgostitev in
posledi¢no zgostitev za drevo. Poleg posameznih datotek, lahko drevo vsebuje tudi poddrevesa. Tako
lahko rekurzivno ustvarimo drevesno podatkovno strukturo, ki zajema mapo z datotekami in podmapami
v poljubni globini.

1Leta 2017 so raziskovalci iz CWI Amsterdam in Google Research nasli prvi prakti¢ni primer dveh razli¢nih pdf datotek,
ki imata isto SHA1 zgostitev[4]. Opisan napad so poimenovali SHAttered. Git je zato z verzijo v2.13.0 zacel uporabljati
verzijo SHA1, ki je odporna proti napadu SHAttered. Kljub temu razvijalci Gita nacrtujejo, da bodo SHA1 postopoma
nadomestili s 256 bitno zgosc¢evalno funkcijo SHA-256.

2V resnici Git shrani vsebino v datoteko z imenom hshy . .. hao v mapi h1ha, kjer je h1hahs . .. hao zapis H(b) v 16-tiskem
sistemu. Datoteka, katere vsebina ima zgostitev H(b) enako 8dd6d4bdaeff93016bd49474b54a911131759648 bo shranjena v
.git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648. Zavoljo preglednosti bomo v nadaljevanju vecrat napac¢no
zatrjevali, da je ime datoteke enako zgostitvi njene vsebine.

https://en.wikipedia.org/wiki/Content-addressable_storage

Poglejmo si primer. Denimo, da imamo v korenski mapi naslednje datoteke in podmape.

bla.txt (vsebina: bla)
Eblabla.txt (vsebina: blabla)
podmapa
L— pla.txt (vsebina: bla)

Slika 2: Struktura datotek in podmap, ki jo bomo hranili v Gitu.

Git bo shranil naslednje objekte v vsebinsko naslovljivo shrambo:

e vsebino datoteke bla.txt

bla

v .git/objects/bc/c1382241e267cf790cabb3afe9fdebdcf1072f

e vsebino datoteke blabal.txt

blabla

v .git/objects/2c/e22b4dc77442103f095503£1205937c1b0fctfc

e seznam datotek v mapi podmapa

100644 blob bcc1382241e267cf790cabb3afe9fdebdcf1072f bla.txt

v .git/objects/ae/247f2a35aadade5863aec2475cf13020304b06

e seznam datotek v korenski mapi

100644 blob 33476f4951afc28dbac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103£095503£12056937c1b0Ofcfc blabla.txt
040000 tree ae247f2a35aadadeb863aec2475c£13020304b06 podmapa

v .git/objects/47/3e0bbfc9deb64fdcal0eb11e5666788ddf664ca

Z uporabo zgostitve kot kazalca na vsebino, Git vsebino mape postavi v podatkovno strukturo, ki
jo matematic¢no lahko opiSemo z usmerjenim grafom. Ce je vsebina datotek enaka(npr. bla.txt in
mapa/bla.txt), Git shrani le eno kopijo, ki je dostopna v datoteki z imenom enakim zgostitvi vsebine.
Zato datote¢no drevo v Gitu ni nujno predstavljeno kot drevo, ampak kot usmerjen (aciklicni) gmjﬂ

2ce22b blabla.txt 473e0b
blabla

drevo

x
a.tx

p\
‘\\’OQa
bccl38 ae247f

<—
bla bla.txt drevo

Slika 3: Primer datote¢nega grafa povezanega z zgostitvami. Zaradi preglednosti bomo v slikah izpisali
le prvih 6 znakov zgostitve.

Posledi¢no lahko vsebino celotne mape opiSemo z eno samo zgostitvijo. Ce spremenimo vsebino, ime
ali lokacijo datoteke, bo sprememba vplivala na zgostitev spremenjene vsebine in sprememba bo splavala
na povrsje do zgostitve za korensko mapo. Zgostitev sluzi tako kot identifikator vsebine, kot tudi kot
kontrolna vsota, ki omogoca detekcijo sprememb.

3Teoreti¢no bi lahko dosegli, da bi bili v grafu tudi cikli, a je to zelo malo verjetno in zato to mo#nost ignoriramo.

Opomba 2 Podatkovna struktura objektov v Gitu je podobna Merklejevim drevesom[3]. Postopek graditve
datotecnega drevesa v Gitu je soroden veriZenju blokov, ki se uporablja v kriptovalutah.

Ponovimo, kar smo spoznali o Gitu. Git hrani vsebino datotek in datotec¢no strukturo v wvsebinsko
naslovljivi shrambi (v mapi .git/objects). To pomeni, da je referenca na posamezen objekt v Gitu
preprosto zgostitev njegove vsebine in da lahko do doloCene vsebine dostopamo le, e poznamo njeno
zgostitev. Po drugi strani je vsebina za vse prakti¢ne primere dolo¢ena s svojo zgostitvijo. Tako lahko
enostavno preverimo verodostojnost vsebine, ki je shranjena v Gitu.

5 Zgodovinski graf sprememb

V prejsnjem poglavju smo videli, kako Git hrani vsebino celotne mape in kako zgostitev korenske mape
dolo¢a vsebino vseh shranjenih datotek. Zgodovinsko drevo sprememb je preprosta razsiritev omenjene
podatkovne strukture.

5.1 Posnetki stanja

Osnovna enota v Gitu je vnos (angl. commit). Vnos je posnetek stanja zabelezenih datotek v trenutku,
ko je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje Se metapodatke o avtorju, datumu vnosa in
opisom sprememb. Podobno kot objekt tipa drevo, je tudi vnos objekt v vsebinsko naslovljivi shrambi
in ima dolo¢eno zgostitev vnosa. Zgostitev vnosa je natanko dolo¢ena z vsebino shranjenih datotek in
metapodatkov vnosa.

tree 65c47feec7465e80492620a48206793e078702e0
parent 16£2994757£1213935b8edbYae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Slika 4: Vnos v Gitu je shranjen v podatkovno shrambo pod imenom, ki je zgostitev vsebine vnosa:
.git/objects/8d/d6d4bdaef£93016bd49474b54a911131759648.

Vsak vnos je povezan s to¢no dolo¢enim posnetekom vsebine korenskega datoteénega drevesa, ki ga
identificira zgostitev. Poleg tega so posamezni vnosi povezani v usmerjen aciklicen graf, ki predstavlja

zgodovino sprememb. Vsak vnos je vozlisce v grafu in izhaja iz enega ali veé starSevskih vnosov. Izjema
je prvi vnos. Povezave v grafu povezujejo vnose z njihovimi starsi.

93434 2ca420 }———(ddodos 28782¢ 710310
3f2022 d2a671

Slika 5: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih
izhaja.

Tudi vnose hrani Git v vsebinsko naslovljivi shrambi pod imenom, ki je enako zgostitvi vnosa. V
shrambi imamo tri vrste objektov: vsebina datotek (blob), datote¢na drevesa (tree) in vnose (commit).
Vsi objekti so dostopni, ¢e poznamo njihovo zgostitev in so med seboj povezani v usmerjen acikli¢ni graf.
Zgostitve objektov "na vrhu"natanko dolocajo vsebino vseh objektov pod njimi. Na vrhu grafa so vnosi,
ki vsebujejo reference na druge vnose in na posnetke korenske mape. Posnetek korenske mape vsebuje
reference na vsebino datotek in posnetke podmap.

vsebina (blob) drevesa (tree) vnosi (commit)

bcc138

bla bla.txt
5el2fg 7e43al
‘0\3‘0\&"‘t koren Prvi vnos
2ce22b / [.
bl stars

blabla %
32e4f1 4efs531
Platxt koren | Popravi bla.txt
33476F /

bla!

Slika 6: Vsebinsko naslovljiva shramba objektov v Gitu. Naslovi so zgostitve vsebine. Shramba vsebuje
dva vnosa. V prvem vnosu smo dodali dve datoteki bla.txt in blabla.txt, v drugem vnosu pa smo
spremenili le vsebino datotoeke bla.txt.

6 Kazalci: veje in znacke

Poleg objektov kot so wnosi, posnetki map in posnetki datotek pozna git Se reference. Reference so
preproste datoteke, ki vsebujejo zgostitev za posamezen vnos. Referenc git ne hrani v skladis¢u objektov,
temvec posebej v mapi .git/refs.

% main)
e23d19 3943eb 98ff21 4e96al

=

¢ v-1.0 %

Slika 7: Veja main in znacka v-1.0 sta preprosta kazalca na posamezen vnos.

Git pozna dve vrste referenc. Veja (angl. branch) je posebne vrste referenca, ki se premika, ko doda-
jamo nove vnose. Vsaki¢ ko ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni
vnos. Veje uporabljamo za vzdrzevanje vzporednih razvojnih linij, ki so med sabo neodvisne. Znacka
(angl. tag) je referenca, ki je stati¢na. Za razliko od veje, se oznaka nikoli ne premika samodejno. Zato se
uporablja predvsem za oznacevanje pomembnih mejnikov v zgodovini na primer verzij posameznih izdaj.

HEAD je posebna referenca, ki kaze na trenutno aktiven vnos. Vnos, na katerega kaze HEAD bo
starSevski vnos naslednjeg vnosa, ki ga bomo dodali. Ko spreminjamo datoteke Git najprej postavi
spremenjene datoteke v cakalnico (angl. staging area), ki se imenuje tudi indeks (angl. index). Sele ko
ustvarimo vnos, Git indeks trajno shrani.

Veje in znacke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose.
Pomen posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja razli¢ne veje
za razli¢ne namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production,
development in podobno oznacujejo razli¢ne stopnje razvoja programske opreme, veje s predpono feature
oznacujejo razvoj novih funkcionalnosti. Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git
repozitoriju. Za Git so vse veje in znacke zgolj preprosti kazalci na dolo¢en vnos.

7 Povzetek

Povzemimo sedaj, kaj smo spoznali o podatkovnem modelu Gita. Git hrani zgodovino sprememb v
vsebinsko naslovljivi shrambi objektov, ki hrani tri vrste objektov:

 main % main)
e23d19 3943eb 98ff21 4e96al

Slika 8: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, znacka v-1.0 pa ostane tam, kjer
je bila.

% main)
e23d19 3943eb 98f@<~~~-~-~~5;_.4e96a1.:3

%HEAD) index |

Slika 9: HEAD je referenca na trenutno aktiven vnos. Index vsebuje spremembe, ki bodo zabeleZene v
naslednjem vnosu.

e blob: vsebina datotek,
e tree: imena vsebovanih datotek in podmap skupaj z njhovimi zgostitvami,

e commit: posnetek stanja projekta v nekem trenutku z metapodatki o avtorju, ¢asu in sporocilom.

Naslovi objektov so zgostitve vsebine objekta, zato je zagotovljena verodostojnost shranjenih podat-
kov. Vnosi so povezani v usmerjen aciklicni graf, ki opiSe zgodovino sprememb. Vsak vnos je dolocen
z zgostitvijo vnosa (angl. commit hash), ki je 40-mestna heksadecimalna vrednost, izra¢unana s SHAL.
Zgostitev vnosa je dolo¢ena na podlagi vsebine vseh datotek, kot tudi metapodatkov vnosa.

Izven shrambe objektov hrani Git Se reference na posamezne vnose. Poznamo dve vrsti referenc:

e Veja (angl. branch) je premi¢na referenca, ki kaZe na dolo¢en vnos v zgodovini in se samodejno
premakne naprej, ko dodajamo nove vnose.

e Oznaka (angl. tag) je stati¢na referenca, ki trajno kaZze na dolo¢en vnos.

e HEAD je posebna oznaka, ki kaZe na trenutno aktiven vnos v delovni kopiji.
Omenimo Se dva pojma, ki jih uporabljamo pri delu z Gitom:

e Delovna kopija (angl. workout copy) je mapa v kateri urejamo datoteke, ki jih nato vnesemo v Git.
V delovni kopiji imajo na zafetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa
(HEAD). Spremembe, ki jih naaredimo na delovni kopiji lahko zabeleZimo v nov vnos.

e Oddaljen repozitorij (angl. remote) je povezava(url) na drug repozitorij (ponavadi na drugem
rac¢unalniku), s katerim lahko izmenjujemo vsebino.

8 Git ukazi kot operacije na grafu

Gitov podatkovni model omogoca, da je ve¢ina operacij v Gitu obrnljivih. To pomeni, da lahko repozitorij
povrnemo v prejsSnje stanje. Vecina operacij le dodaja nove vnose in starih ne briéeﬂ Zato so stare razli¢ice
datotek vedno na voljo. Git uporabniku daje samozavest, da brez strahu spreminja vsebino, saj se lahko
vedno vrne v ¢asu nazaj. Kot bi imel ¢asovni stroj.

Opremljeni z razumevanjem podatkovnega modela Gita, lazje razumemo posamezne operacije, ki jih
Git omogoc¢a. Ukazov ne bom prevajal, ampak jih bom navedel kot jih pozna program git.

git checkout referenca

spremeni datoteke v delovni kopiji tako, da se ujemajo z vnosom, na katerega kaze referenca. Poleg
tega prestavi oznako HEAD na isti vnos. Ce je referenca veja, jo nastavi, kot aktivno vejo. Ce je referenca
oznaka ali zgostitev vnosa, priedmo v stanje brez aktivne veje (angl. deteached HEAD).

git commit -m "Sporolilo za vnos"

ustvari nov vnos, ki kaZe na stanje v ¢akalnici (angl. staging area ali index). V zgodovinskem grafu
ustvari novo vozlisce, ki je povezano s prej$njim vnosom. Poleg tega prestavi aktivno vejo in oznako HEAD
na novo ustvarjeni vnos.

git add bla.txt

doda vsebino spremenjene datoteke bla.txt v ¢akalnico. Ukaz ne spreminja zgodovinskega grafa, pa¢ pa
doda novo vsebino in datote¢na drevesa, ki vsebujejo spremembe v shrambo objektov. Vsebina ¢akalnice
bo zabelezena v naslednjem vnosu.

git pull

pobere vsebino(objekte in reference) iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno.
Shrambi objektov se preprosto doda nove objekte, ki so v oddaljeni veji. Ce je lokalna veja prednik
oddaljene, se lokalna veja enostavno prestavi, da kaZe na isti vnos, kot oddaljena veja. V nasprotnem
primeru, mora uporabnik posredovati in razresiti morebitne konflikte.

git push

potisne novo vsebino na oddaljeni repozitorij. Push deluje obratno kot pull. Ukaz je uspesno izveden le,
¢e je oddaljena veja predhodnica lokalne veje.

git fetch

pobere novo vsebino (vnose, veje in oznake) iz oddaljenega repozitorija. Pri tem ne more priti do kon-
fliktov, ker git preprosto doda nove objekte v shrambo in obstoje¢ih objektov nikakor ne spreminja.
Oddaljenim vejam in oznakam preprosto doda predpono z imenom oddaljenega repozitorija.

git reset referenca

spremeni kam kaZe trenutno izbrana veja. Trenutno izbrano vejo prestavi na isti vnos, na katerega kaze
dana referenca. Ukaz ne spremeni zgodovinskega drevesa, ampak le to, na kateri vnos kaze trenutno
izbrana veja.

git merge referenca

ustvari nov vnos, ki zdruzi dve lo¢eni veji v eno (trenutno izbrano in referenco). Nov vnos ima dva starsa:
vnos na katerega kaZze trenutna veja in vnos, na katerega kaze referenca. Ce pride do konfliktov, jih
mora uporabnik sam razresiti, preden se ustvari nov vnos.

git rebase referenca

prestavi vnose v trenutno izbrani veji tako, da so potomci vnosa, na katerega kaze referenca. Med ukazi,
ki smo jih spoznali, je ta ukaz edini, ki lahko povzroéi izgubo podatkov. Obicajno ukazi le dodajajo nove
vnose in prestavljajo reference. Zato je veCina ukazov v Gitu varna, v smislu, da jih lahko kasneje
prekli¢éemo in pridemo nazaj na prejsnje stanje. Ukaz rebase pa spremeni zgodovino in ga ne moremo
preklicati, saj trenutne vnose nadomesti z novimi in stare vnose pobris

4Nekatere operacije vnose tudi brisejo (npr. git rebase). Takim operacijam reemo, da spreminjajo zgodovino. Upo-
rabniki morajo biti pri njihovi uporabi posebej pazljivi, da Cesa trajno ne zamocijo.

5Obstaja enostaven nacin, kako rebase izvedemo tako, da ga lahko kasneje preklitemo. Na vnos, ki ga Zelimo prestaviti
7 rebase, preprosto postavimo novo vejo ali oznako. To povzro¢i, da se stari vnosi ne pobrisejo, ko se izvede ukaz rebase.

9 Trki zgostitev in rojstnodnevni paradoks

Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Ce bi imeli dve datoteki z razlicno vsebino
isto zgostitev, bi Git shranil le eno datoteko in bi prislo do izgube podatkov. Git se zanaSa na to, da je
verjetnost za to izjemno majhna. Kako bi ocenili to verjetnost?

Koliko datotek bi morali shraniti v Git, da bi z znatno verjetnostjo prisSlo do trka? VpraSanje je
povezano z rojstnodnevnim problemom. Kako velika naj bo skupina ljudi, da bo vsaj 50% verjetnost,
da imata dve osebi na isti dan rojstni dan? Velikost skupine je presenetljivo majhna(23), zato rojstno-
dnevnei problem imenujemo tudi rojstnodnevni paradoks. VpraSanje zastavimo matemati¢no. Naklju¢no
izberemo n < d Stevil iz mnozice {1,2,...,h}, tako da je vsaka izbira enakomerno porazdeljena. Koli-
kina je verjetnost p(n, h), da bosta vsaj dve Stevili enaki? Verjetnost p(n, h) izra¢unamo elementarno z
verjetnostjo nasprotnega dogodka:

1= pnpy = W=D D) H(l—) 1)

Ce izraz logaritmiramo, dobimo

n—1 n—1
log(1—p(n,h)) => log(l— 7)< =Y % M @)
k=1 P

Res! Logaritem je konveksna funkcija, zato so vrednosti manjse od vrednosti na tangenti log(1 — %) =

log(l—2) <z ==%

Od tod izpeljemo oceno za p(n, h)

M)

—(n(n-1)
p(n,h)>1—e™ 2» s

s

5
—~
w
=

Za vrednosti 1 < n < hjel— 6_% tudi dobra aproksimacija za p(n, h).

Da bi odgovorili kako odporna je zgos¢evalna funkcija na morebitne trke, moramo resiti obratno
nalogo: najvet koliko $tevil n(p, d) lahko izberemo, da bo verjetnost pojava dveh enakih Stevil manjsa od
p € [0,1]? Natancen odgovor na to vprasanje ni tako preprost [1]. Lahko pa uporabimo oceno in Cez
palec ocenimo vrednost n(p, h):

—n? ~log(l —p) =

n(p,h) ~ \[2hlog(115) ~ V2h. (1)

Funkcija log(ﬁ) zelo pocasi narasca, ko se p priblizuje 1, zato jo lahko zanemarimo. Ce je

zgoséevalna funkcija 160 bitna, kot na primer SHA1L, je n ~ v/2160 = 280, Znatna verjetnost, da pride do
trka zgostitev, bi se pojavila, ko bi shranili 280 razli¢nih verzij datotek v Git. Raziskovalci, ki so razvili

napad SHAttered, so se posebej potrudili in so potrebovali “zgolj” priblizno 253 primerov, da so prisli do
trka.

10 Zakljucek

Spoznali smo, kako deluje Git in s katerimi matemati¢nimi pojmi lahko opiSemo njegov podatkovni model.
Upam, da boste s tem znanjem bolj samozavestno uporabljali Git. Opis dela z Gitom presega namen
tega dokumenta, zato vas raje usmerim na uradno dokumentacijo:
https://git-scm.com/cheat-sheet
Pri pisanju tega Clanka sem sevada uporabljal Git. V javno dostopnem repozitorijul [5] si lahko
ogledate celotno zgodovino nastajanja tega ¢lanka. Pri pripravi dokumenta sem uporabil Gemini 3, a
sem vse odgovore skrbno preveril in uredil po svoje.

Literatura

[1] David Brink. A (probably) exact solution to the Birthday Problem. The Ramanujan Journal,
28(2):223-238, June 2012. doi:10.1007/s11139-011-9343-9.

https://git-scm.com/cheat-sheet
https://git.fri.uni-lj.si/martin.vuk/git-intro
https://doi.org/10.1007/s11139-011-9343-9

[2] Scott Chacon and Ben Straub. 10.2 Git Internals - Git Objects. In Pro Git. URL: https://git-scm.
com/book/en/v2/Git-Internals-Git-Objects|

[3] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In Carl Po-
merance, editor, Advances in Cryptology — CRYPTO ’87, pages 369378, Berlin, Heidelberg, 1988.
Springer. |[doi:10.1007/3-540-48184-2_32.

[4] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The First Collision
for Full SHA-1. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology — CRYPTO
2017, pages 570-596, Cham, 2017. Springer International Publishing.

[6] Martin Vuk. git-intro. URL: https://git.fri.uni-1j.si/martin.vuk/git-intro.

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://doi.org/10.1007/3-540-48184-2_32
https://git.fri.uni-lj.si/martin.vuk/git-intro

	Kaj je Git?
	Podatkovno skladišče
	Zgoščevalna funkcija
	Datotečna drevesa
	Zgodovinski graf sprememb
	Posnetki stanja

	Kazalci: veje in značke
	Povzetek
	Git ukazi kot operacije na grafu
	Trki zgostitev in rojstnodnevni paradoks
	Zaključek

