
Git za matematike

Martin Vuk

Git je program, ki omogoča vodenje zgodovine različic datotek v nekem direktoriju. V
glavnem se uporablja za upravljanje z izvorno kodo pri razvoju računalniških
programov. Mnogi med nami pa ga uporabljajo tudi pri pisanju besedil v LaTeX-u.
Poleg tega, da Git hrani zgodovino sprememb, tudi omogoča da več ljudi hkrati
sodeluje pri urejanju istih datotek. Ogledali si bomo, kako Git deluje. Opisali bomo,
kako Git uporabi zgoščevalne funkcije, Merklejeva drevesa in usmerjene aciklične grafe,
da shrani zgodovino različic in omogoči hkratno urejanje vsebine. Matematični
model, ki ga Git uporablja je v resnici zelo preprost in njegovo razumevanje nas
lahko reši marsikatere zagate, ki nastane med njegovo uporabo.

1. Kaj je Git?

Git je kot časovni stroj za datoteke. Uporabniku omogoča, da vidi pretekle različice datotek,
sprememinja datoteke, brez skrbi, da bi kaj pokvaril in datoteke deli z drugimi. Poleg časovnega stroja
je Git razpršeno skladišče datotek. Omogoča, da datoteke hkrati ureja več uporabnikov na različnih
računalnikih in kasneje spremembe združi.

Git hrani vsebino direktorija z datotekami in celotno zgodovino različic datotek iz preteklosti. Za vsako
različico hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno
različico. Vse te imformacije dajejo podroben pregled nad zgodovino sprememb.

Opomba

Git in GitHub nista eno in isto. Ljudje pogosto mešajo Git in GitHub. Git je program, ki si ga lahko vsakdo

namesti in poganja na svojem računalniku. Program Git je ustvaril Linus Torvalds, da bi lažje upravljal z

izvorno kodo za jedro operacijskega sistema Linux. GitHub je javno spletišče, ki je namenjeno skladiščenju

Git repozitorijev.

Opomba

Sisteme, ki omogočajo hranjenje preteklih različic datotek, imenujemo sistemi za nadzor različic (angl.

version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management

(SCM)).

Poleg nadzora različic Git omogoča hkratno spreminjanje datotek več uporabnikov na različnih

računalnikih. Zato je Git distribuiran sistem za nadzor različic (angl. Distributed Version Control System

(DVCS)).

V nadaljevanju bomo obravnavali nasledjne teme:
• Podatkovno skladišče: Kako Git uporablja zgoščevalno funkcijo in Merklejeva drevesa za hranjenje

posnetkov vsebine direktorija.
• Zgodovina sprememb: Kako zgodovino predstavimo z usmerjenim acikličnim grafom, v katerem so

vozlišča različice in ki povezuje različice z njihovimi neposrednimi predhodniki.
• Reference: Kako preproste reference (kazalci) na vsebino omogočajo bliskovito preklaplanje med

različicami in preprečijo popolno zmešnjavo, ko več ljudi hkrati spreminja iste datoteke.

1

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

2. Podatkovno skladišče

Ko ustvarimo nov Git repozitorij, Git ustvari direktorij z imenom .git, ki vsebuje vse podatke, ki jih Git
potrebuje. Git v mapi .git hrani različne stvari:
• vsebino datotek, s ki smo jih dodali v repozitorij
• drevesno strukturo direktorija
• posnetke stanja v rezličnih trenutkih s podatki o avtoju, datumu in opisu sprememb
• kazalce na posamezne posnetke stanja

Git repozitorij je vsak direktorij, ki vsebuje poddirektorij .git z zgoraj navedenimi podatki. Podrobnosti o
tem lahko preberete v knjigi Pro Git [1, pog. 10.2].

2.1. Zgoščevalna funkcija

Git ne shranjuje datotek z običajnimi imeni, ampak za ime uporabi vrednost zgoščevalne funkcije njene
vsebine. Git uporablja zgoščevalno funkcijo SHA-1. Funkcija SHA1 je posebna implementacija zgoščevalne
funkcije, ki se uporablja v kriptografiji.

Naj bo 𝐵 množica vseh možnih podatkovnih nizov(besedil). Zgoščevalna funkcija SHA1 je funkcija

𝐻 : 𝐵 → {0, 1,…, 2160 − 1},

ki vsakemu besedilu 𝑏 priredi 160-bitno zgoščeno vrednost besedila 𝐻(𝑏). Funkcija 𝐻 , je izbrana tako, da

sprememba enega samega bita v besedilu 𝑏 ∈ 𝐵 spremeni vrednost 𝐻(𝑏). Poleg tega zahtevamo, da je

porazdelitev vrednosti 𝐻(𝑏) čim bližje enakomerni porazdelitvi. To pomeni, da so vse vrednosti 𝐻(𝑏)
približno enako verjetne. Kljub temu, da zgoščevalna funkcija 𝐻 ni injektivna, je verjetnost, da bi imela

dva podatkovna niza isto vrednost 𝐻 zelo majhna(≈ 2−159). Zato lahko v praksi predpostavimo, da je z

vrednostjo 𝐻(𝑏) niz 𝑏 enolično določen.

Ko datoteko z vsebino 𝑏 zabeležimo v Git repozitorij, git shrani vsebino v datoteko z imenom 𝐻(𝑏) v git/

objects1. Vsebina 𝑏 je tako vedno dostopna pod imenom 𝐻(𝑏). Tako dobimo vsebinsko naslovljivo
shrambo objektov, ki je ena od bistvenih značilnosti Gita. Ta način shranjevanja omogoča, da lahko vedno
preverimo, če ima shranjenjena vsebina isto vrednost zgoščevalne funkcije, kot je njeno ime. Lahko tudi
shranimo več različic iste datoteke, saj ima vsaka različica drugačno zgoščevalno vrednost. Zgoščevalna
vrednost služi tudi kot kontrola, če je prišlo do kvaritve podatkov, ki so shranjeni v Git repozitoriju.

2.2. Datotečna drevesa

V vsebinsko naslovljivo shrambo objektov lahko shranimo vsebino datotek in njihovih prejšnjih različic. A
kako ohranimo informacijo o imenu datotek in drevesni strukturi direktorija? Git za to ustvari nov tip
objekta drevo (angl. tree), ki hrani preprost seznam imen datotek in naslovov na vsebino datotek v

direktoriju. Naslov na vsebino datoteke 𝑏 je seveda zgoščena vrednost vsebine 𝐻(𝑏). Seznam imen datotek
in zgoščenih vrednosti je preprosta tekstovna datoteka, za katero lahko izračunamo zgoščeno vrednost.
Zgoščena vrednost datotečnega drevesa natanko določa tako imena datotek, kot tudi vsebino datotek, ki so
vsebovane v direktoriju. Če se katerakoli datoteka ali ime datoteke v direktoriju spremeni, se bo spremnila
tudi njena zgoščena vrednost in posledično zgoščena vrednost za drevo. Poleg posameznih datotek, lahko
drevo vsebuje tudi poddrevesa. Tako lahko rekurzivno ustvarimo drevesno podatkovno strukturo, ki
zajema direktorij z datotekami in poddirektoriji v poljubni globini.

1V resnici Git shrani vsebino v datoteko z imenom ℎ3ℎ4…ℎ40 v mapi ℎ1ℎ2, kjer je ℎ1ℎ2ℎ3…ℎ40 zapis 𝐻(𝑏) v 16-tišlkem
sistemu. Datoteka, katere vsebina ima zgoščeno vrednost 𝐻(𝑏) enako 8dd6d4bdaeff93016bd49474b54a911131759648 bo
shranjena v .git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648

2

https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage

100644 blob bcc1382241e267cf790ca6b3afe9fde6dcf1072f bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1b0fcfc blabla.txt
040000 tree 605f479464bebe4f7250ace49bab48e72855f84a podmapa

Program 1: Vsebina direktorija v Gitu je preprost seznam datotek in poddirektorijev in zgoščenih vrednosti
njihove vsebine

Poglejmo si primer. Denimo, da imamo v naslednjo strukturo datotek in poddirektorijev

├── bla.txt (vsebina: bla)
└── mapa
 ├── bla.txt (vsebina: bla)
 └── blabla.txt (vsebina: blabla)

Git bo shranil naslednje objekte v vsebinsko naslovljivo shrambo:
• vsebino datoteke bla.txt:

Zgoščena vrednost: bcc1382241e267cf790ca6b3afe9fde6dcf1072f

bla

• vsebino datoteke blabal.txt:

Zgoščena vrednost: 2ce22b4dc77442103f095503f1205937c1b0fcfc

blabla

• seznam datotek v direktoriju mapa:

Zgoščena vrednost: e8cc593eddfb9cfdafb4f9c46ab7f5a05ea00b2b

100644 blob bcc1382241e267cf790ca6b3afe9fde6dcf1072f bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1b0fcfc blabla.txt

• seznam datotek v korenskem direktoriju:

Zgoščena vrednost: 1331d77b31e40d6b470706b195f21244bb32cf21

100644 blob bcc1382241e267cf790ca6b3afe9fde6dcf1072f bla.txt
040000 tree e8cc593eddfb9cfdafb4f9c46ab7f5a05ea00b2b mapa

Git z uporabo zgoščene vrednosti kot kazalca na vsebino, vsebino direktorija postavi v podatkovno
strukturo, ki jo matematično lahko opišemo z usmerjenim acikličnim grafom. Ko je vsebina datotek
enaka(npr. bla.txt in mapa/bla.txt), Git shrani le eno kopijo, ki je dostopna v datoteki .git/objects/
bc/c1382241e267cf790ca6b3afe9fde6dcf1072f. Zato datotečno drevo v Gitu ni nujno predstavljeno kot
drevo, ampak kot usmerjen aciklični graf.

bla.txt

mapabla.txt

blabla.txt

bcc138

bla

2ce22b

blabla
e8cc59

drevo

1331d7

drevo

Slika 1: Primer datotečnega grafa povezanega z zgoščenimi vrednostmi

Posledično lahko celotno vsebino direktorija opišemo z eno samo zgoščeno vrednostjo. Če spremenimo
vsebino, ime ali lokacijo datoteke, bo sprememba vplivala na zgoščeno vrednost spremenjene vsebine in
sprememba bo splavala na površje do zgoščene vrednosti za korenski direktorij. Zgoščena vrednost služi
tako kot identifikator vsebine, kot tudi kot kontrolna vsota, ki omogoča detekcijo sprememb.

3

Opomba

Podatkovna struktura objektov v Gitu je podobna Merklejevim drevesom. Razlika je v tem, da Gita hrani le

eno kopijo datotek z identično vsebino, zato dobimo usmerjen aciklični graf in ne drevesa. Postopek je

podoben veriženju blokov, ki se uporablja v kriptovalutah.

Opomba

Dostop do objekta je mogoč, če poznamo zgoščeno vrednost njegove vsebine. To pomeni, da je referenca na

posamezen objekt v Gitu preprosto zgoščena vrednost(angl. hash) vsebine tega objekta. Po drugi strani je

vsebina objekta določena z njegovo zgoščeno vrednostjo. To pomeni, da lahko enostavno preverimo

verodostojnost vsebine, ki je shranjena v Gitu. Git hrani skladišče objektov v direktoriju .git/objects.

3. Zgodovinski graf sprememb

V prejšnjem poglavju smo videli, kako Git hrani vsebino direktorija in kako je mogoče do vsebine
dostopati če poznamo zgoščeno vrednost korenskega direktorija. Zgodovinsko drevo sprememb je
preprosta razširitev omenjene podatkovne strukture.

3.1. Posnetki stanja

Osnovna enota v Gitu je Vnos (angl. commit). Vnos je posnetek stanja zabeleženih datotek v trenutku, ko
je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje še metapodatke o avtorju, datumu vnosa in
opisom sprememb. Podobno kot objekt tipa drevo, je tudi vnos objekt v vsebinsko naslovljivi shrambi, ki je
ima določeno zgoščeno vrednost vnosa. Zgoščena vrednost vnosa je natanko določena z vsebino
shranjenih datotek in metapodatkov vnosa.

Zgoščena vrednost: 8dd6d4bdaeff93016bd49474b54a911131759648

tree 65c47feec7465e80492620a48206793e078702e0
parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Tabela 1: Primer vnosa v Gitu. Vnos vsebuje zgoščeno vrednost posnetka direktorija(tree), zgoščeno
vrednost starševskega vnosa (parent) in metapodatke. Tudi sam vnos je natančno določen z zgoščeno

vrednostjo.

Vsak vnos je povezan s točno določenim posnetekom vsebine korenskega datotečnega drevesa, ki ga
identificira zgoščena vrednost. Poleg tega so posamezni vnosi so povezani v usmerjen acikličen graf

(DAG), ki predstavlja zgodovino sprememb. Vsak vnos je vozlišče v grafu. Vsak vnos izhaja iz enega ali
več starševskih vnosov. Izjema je prvi vnos. Povezave v grafu povezujejo vnose z njihovimi starši.

d93434 2ca420 dd0d98 28782c 710310

3f2922 d2a671

Slika 2: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih izhaja.

Git hrani zgodovino sprememb v vsebinsko naslovljivi shrambi objektov, ki hrani tri vrste objektov:
• blob: vsebina datotek,
• tree: vsebina direktorijev,
• commit: posnetek vsebine v določenem trenutku.

4

Objekti so poevazni v usmerjen aciklični graf. Podgraf na vnosih določa zgodovino sprememb. Naslovi
objektov so zgoščene vrednosti vsebine objekta, zato je zagotovljena verodostojnost shranjenih podatkov.

starš

bla.txt

bla.txt

blabla.txt

blabla.txt

vsebina (blob) drevesa (tree) vnosi (commit)

bcc138

bla

2ce22b

blabla

33476f

bla!

ae12fg

koren

32e4f1

koren

7e43a1

Prvi vnos

4ef531

Popravi bla.txt

Slika 3: Vsebinsko naslovljiva shramba objektov v Gitu. Naslovi so zgoščene vrednosti vsebine. Shramba
vsebuje dva vnosa. V prvem vnosu smo dodali dve datoteki bla.txt in blabla.txt, v drugem vnosu pa

smo spremenili le vsebino datotoeke bla.txt.

4. Kazalci: veje in značke

Poleg objektov kot so vnosi, posnetki direktorijev in posnetki datotek pozna git še reference. Reference so
kazalci z določenim imenom na posamezen vnos.

main

e23d19 3943eb 98ff21 4e96a1

v-1.0

Slika 4: Veja (angl. branch) ali značka(angl. tag) je preprost kazalec na posamezen vnos(angl. commit).

Referenc git ne hrani v skladišču objektov, temveč posebej v direktoriju .git/refs. Zato so reference
vezane na posamezen repozitorij in se lahko razlikujejo med različnimi kloni določenega repozitorija.

Veja (angl. branch) je posebne vrste referenca, ki se premika, ko dodajamo nove vnose. Vsakič ko
ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni vnos.

Značka (angl. tag) je referenca, ki je statična in se ne premika več, ko jo enkrat ustvarimo.

main

e23d19 3943eb 98ff21 4e96a1

main

v-1.0

Slika 5: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, značka v-1.0 pa ostane tam, kjer je
bila.

5

Opomba

Veje in značke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose. Pomen

posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja različne veje za različne

namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production, development

in podobno označujejo različne stopnje razvoja programske opreme, veje s predpono feature- označujejo

razvoj novih funkcionalnosti.

Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git repozitoriju. Za Git so vse veje in značke zgolj

preprosti kazalci na določen vnos.

HEAD je posebna referenca, ki kaže na trenutno aktiven vnos. Vnos, na katerega kaže HEAD bo starševski
vnos naslednjeg vnosa, ki ga bomo dodali.

e23d19 3943eb 98ff21 4e96a1

main

HEAD index

Slika 6: HEAD je referenca na trenutno aktiven vnos. Index vsebuje spremembe, ki bodo zabeležene v
naslednjem vnosu.

4.1. Povzetek

Povzemimo sedaj, kaj smo spoznali o podatkovnem modelu Gita. V vsebinsko naslovljivi shrambi hrani Git
posnetke stanja direktorija, ki ga vodimo v repozitoriju skupaj z metapodatki o spremembah.
Najpomembnejša pojma sta:
• Vnos (angl. commit) je posnetek trenutnega stanja projekta, shranjen kot vozlišče v zgodovinskem

grafu, ki vsebuje posnetek stanja datotek ter metapodatke (avtor, čas, sporočilo).
• Zgoščena vrednost vnosa (angl. commit hash) je 40-mestna heksadecimalna vrednost, izračunana s

SHA-1, ki enolično identificira vnos na podlagi vsebine posnetka in metapodatkov.

Izven shrambe objektov hrani Git še reference na posamezne vnose. Poznamo dve vrsti referenc:
• Veja (angl. branch) je premična reference, ki kaže na določen vnos v zgodovini in se samodejno

premakne naprej, ko dodajamo nove vnose. Veje omogočajo vzporedne razvojne linije ki so med sabo
neodvisne.

• Oznaka (angl. tag) je statična referenca, ki trajno kaže na določen vnos. Za razliko od veje se oznaka,
nikoli ne premika samodejno, zato se uporablja predvsem za označevanje pomembnih točk v zgodovini,
kot so izdaje ali stabilne verzije.

• HEAD je posebna oznaka, ki kaže na trenutno aktiven vnos v delovni kopiji.

Omenimo še dva pojma, ki jih uporabljamo pri delu z Gitom:
• Delovna kopija (angl. workout copy) je direktorij v katerem urejamo datoteke, ki jih nato vnesemo v

Git. V delovni kopiji imajo na začetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa
(HEAD). Spremembe, ki jih naaredimo na delovni kopiji lahko zabeležimo v nov vnos.

• Oddaljen repozitorij (angl. remote) je povezava(url) na isti repozitorij na drugem
računalniku(ponavadi strežniku), s katerim lahko izmenjujemo vsebino.

6

Opomba

Gitov podatkovni model omogoča, da je večina operacij v Gitu obrnljivih. To pomeni, da lahko repozitorij

povrnemo v prejšnje stanje. Običajne operacije le dodajajo nove vnose in starih ne brišejo. Prav tako se v

zgodovinsko drevo le dodaja nove povezave in starih se ne briše. Zato daje delo z Gitom uporabniku

samozavest, da brez strahu spreminja vsebino, saj se lahko vedno vrne v času nazaj, kot da bi imel časovni

stroj.

Nekatere operacije pa tudi brišejo vnose (npr. git rebase). Takim operacijam rečemo, da spreminjajo

zgodovino. Uporabniki morajo biti pri uporabi operacij, ki spreminjajo zgodovino posebej pazljivi, da česa

trajno ne zamočijo.

5. Git ukazi kot operacije na grafu

Ko smo opremljeni z razumevanjem podatkovnega modela Gita, razložimo kaj pomenijo posamezne
operacije, ki jih Git omogoča. Ukazov ne bom prevajal, ampak jih bom navedel kot jih pozna program git.

5.1. Checkout

Ukaz

git checkout referenca

spremeni datoteke v delovni kopiji tako, da se ujemajo z vnosom, na katerega kaže referenca. Poleg tega
prestavi oznako HEAD na isti vnos. Če je referenca veja, jo nastavi, kot aktivno vejo. Če je referenca oznaka
ali zgoščena vrednost vnosa, priedmo v stanje brez aktivne veje (angl. deteached HEAD).

5.2. Commit

Ukaz

git commit -m "Sporočilo za vnos"

ustvari nov vnos, ki kaže na stanje v čakalnici (angl. staging area ali index). V zgodovinskem grafu ustvari
novo vozlišče, ki je povezano s prejšnjim vnosom. Poleg tega prestavi aktivno vejo in oznako HEAD na novo
ustvarjeni vnos.

5.3. Add

Ukaz

git add bla.txt

doda vsebino spremenjene datoteke bla.txt v čakalnico. Ukaz ne spreminja zgodovinskega grafa, pač pa
doda novo vsebino in datotečna drevesa, ki vsebujejo spremembe v shrambo objektov. Vsebina čakalnice
bo zabeležena v naslednjem vnosu.

5.4. Pull

Ukaz

git pull

pobere vsebino(objekte in reference) iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno.
Shrambi objektov se preprosto doda nove objekte, ki so v oddaljeni veji. Če je lokalna veja prednik
oddaljene, se lokalna veja enostavno prestavi, da kaže na isti vnos, kot oddaljena veja. V nasprotnem
primeru, mora uporabnik posredovati in razrešiti morebitne konflikte.

7

5.5. Push

Ukaz

git push

potisne novo vsebino na oddaljeni repozitorij. Push deluje obratno kot pull. Ukaz je uspešno izveden le, če
je oddaljena veja prednica lokalne veje in ni konflikotov.

5.6. Fetch

Ukaz

git fetch

pobere novo vsebino (vnose, veje in oznake) iz oddaljenega repozitorija. Pri tem ne more priti do
konfliktov, ker git preprosto doda nove objekte v shrambo in obstoječih objektov nikakor ne spreminja.
Oddaljenim vejam in oznakam preprosto doda predpono z imenom oddaljenega repozitorija.

6. Reset

Ukaz

git reset referenca

spremeni kam kaže trenutno izbrana veja. Ukaz ne spremeni zgodovinskega drevesa, ampak le to, na kateri
vnos kaže trenutno izbrana veja.

6.1. Merge

Ukaz

git merge referenca

ustvari nov vnos, ki združi dve ločeni veji v eno (trenutno izbrano in referenco). Nov vnos ima dva starša:
vnos na katerega kaže trenutna veja in vnos, na katerega kaže referenca. Če pride do konfliktov, jih mora
uporabnik sam razrešiti, preden se ustvari nov vnos.

6.2. Rebase

Ukaz

git rebase referenca

prestavi vnose v trenutno izbrani veji tako, da so potomci vnosa, na katerega kaže referenca. Med ukazi, ki
smo jih spoznali, je ta ukaz edini, ki lahko povzroči izgubo podatkov. Običajno ukazi le dodajajo nove
vnose in prestavljajo reference. Zato je večina ukazov v Gitu varna, v smislu, da jih lahko kasneje
prekličemo in pridemo nazaj na prejšnje stanje. Ukaz rebase pa spremeni zgodovino in ga ne moremo
preklicati, saj trenutne vnose nadomesti z novimi in stare vnose pobriše2.

6.3. Zaključek

Spoznali smo, kako deluje Git in s katere matematičnime pojme uporablja za model. Opis dela z Gitom
presega namen tega dokumenta, zato vas raje usmerim na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

2Obstaja enostaven način, da tudi rebase lahko prekličemo. Na zadnji vnos, ki ga želimo prestaviti preprosto postavimo
novo referenco(vejo ali oznako). To povzroči, da se stari vnosi ne pobrišejo tudi, ko se izvede ukaz rebase.

8

https://git-scm.com/cheat-sheet

Pri pisanju tega članka sem sevada uporabljal Git. V javno dostopnem repozitoriju si lahko ogledate
celotno zgodovino nastajanja tega članka.

Pri pripravi dokumenta sem uporabil Gemini 3. Vse odgovore sem preveril in uredil po svoje.

Literatura

[1] S. Chacon in B. Straub, „10.2 Git Internals - Git Objects“, Pro Git. Pridobljeno: 3. januar 2026. [Na
spletu]. Dostopno na: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

Sledi še skica, ki povzame vse komponente Git repozitorija.

9

https://git.fri.uni-lj.si/martin.vuk/git-intro
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

bar

foo

bar

foo

ti
m

e

0a3d36Initial commit

ce2d1d

0459b3

b62527

Merge commit
commit with two parents

93f4ee

7b67bd

2e4289

7ed6de

aa083c

3f28d1

2e9986

main

hotfix HEAD

v-2.0

v-1.0

v-1.1

Version history

Directed Acyclic Graph (DAG)
describes version history.
Commits are nodes in DAG.
Commits are connected with
their parents.

Branches

references that move
along when

commiting changes

Tags

references that don’t
move

Staging area (index)

filesystem snapshot that

will be commited in the

next commit

Head

reference to current branch

parent to the next commit

Commit

file tree snapshot with
metadata in object store

commit hash: aa083c

tree 43e2f7
parent 93f4ee
author Martin Vuk
committer MV <mv...

Add bla

Content addressable object store
.git/objects

aa083c

Add bla

93f4ee

Merge commit

43e2f7

tree

e05dcd

tree

cb48cd

bla bla

077231

lorem

d1bc32

bla

parent

	1. Kaj je Git?
	2. Podatkovno skladišče
	2.1. Zgoščevalna funkcija
	2.2. Datotečna drevesa

	3. Zgodovinski graf sprememb
	3.1. Posnetki stanja

	4. Kazalci: veje in značke
	4.1. Povzetek

	5. Git ukazi kot operacije na grafu
	5.1. Checkout
	5.2. Commit
	5.3. Add
	5.4. Pull
	5.5. Push
	5.6. Fetch

	6. Reset
	6.1. Merge
	6.2. Rebase
	6.3. Zaključek

	Literatura

