Git za matematike

Martin Vuk

Git je program, ki omogoca vodenje zgodovine razli¢ic datotek v neki
mapi(direktoriju). V glavnem se uporablja za upravljanje z izvorno kodo pri razvoju
racunalnigkih programov. Mnogi med nami pa ga uporabljajo tudi pri pisanju besedil
v LaTeX-u. Poleg tega, da Git hrani zgodovino sprememb, tudi omogoca da ve¢ ljudi
hkrati sodeluje pri urejanju istih datotek. Ogledali si bomo, kako Git deluje. Opisali
bomo, kako Git uporabi zgoscevalne funkcije, Merklejeva drevesa in usmerjene aciklicne
grafe, da shrani zgodovino razlic¢ic in omogo¢i hkratno urejanje vsebine. Matematic¢ni
model, ki ga Git uporablja je v resnici zelo preprost in njegovo razumevanje nas
lahko resi marsikatere zagate, ki nastane med njegovo uporabo.

1. Kaj je Git?

Git je kot casovni stroj za datoteke. Uporabniku omogoca, da vidi pretekle razlic¢ice datotek, spreminja
datoteke, brez skrbi, da bi kaj pokvaril in datoteke deli z drugimi. Poleg asovnega stroja je Git
razprseno skladisce datotek. Omogoca, da datoteke hkrati ureja ve¢ uporabnikov na razli¢nih
racunalnikih in kasneje spremembe zdruzi.

Git hrani vsebino mape z datotekami in celotno zgodovino razli¢ic datotek iz preteklosti. Za vsako razli¢ico
hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno razlic¢ico. Vse te
imformacije dajejo podroben pregled nad zgodovino sprememb.

Opomba

Git in GitHub nista eno in isto. Ljudje pogosto mesajo Git in GitHub. Git je program, ki si ga lahko vsakdo
namesti in poganja na svojem racunalniku. Program Git je ustvaril Linus Torvalds, da bi laZje upravljal z
izvorno kodo za jedro operacijskega sistema Linux. GitHub je javno spletisce, ki je namenjeno skladis¢enju
Git repozitorijev.

Opomba

Sisteme, ki omogocajo hranjenje preteklih razlicic datotek, imenujemo sistemi za nadzor razlicic (angl.
version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management
(SCM)).

Poleg nadzora razlicic Git omogoca hkratno spreminjanje datotek ve¢ uporabnikov na razlicnih
racunalnikih. Zato je Git distribuiran sistem za nadzor razlicic (angl. Distributed Version Control System
(DVCS)).

V nadaljevanju bomo obravnavali nasledjne teme:

« Podatkovno skladisce: Kako Git uporablja zgoscevalno funkcijo in Merklejeva drevesa za hranjenje
posnetkov vsebine mape.

« Zgodovina sprememb: Kako zgodovino predstavimo z usmerjenim acikli¢nim grafom, v katerem so
vozlisca razliice, povezave pa povezejo razli¢ice z njihovimi neposrednimi predhodniki.

« Reference: Kako preproste reference (kazalci) na vsebino omogoéajo bliskovito preklaplanje med
razli¢icami in preprecijo popolno zmesnjavo, ko vec ljudi hkrati spreminja iste datoteke.

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

2. Podatkovno skladisce

Ko ustvarimo nov Git repozitorij, Git ustvari podmapo z imenom .git z vsemi podatki, ki jih Git potrebuje.
Git v mapi .git hrani razli¢ne stvari:

« vsebino datotek, ki smo jih dodali v repozitorij,

« drevesno strukturo korenske mape, ki jo hranimo v repozitoriju,

« posnetke stanja v razli¢nih trenutkih s podatki o avtoju, datumu in opisu sprememb,

« kazalce na posamezne posnetke stanja.

Git repozitorij je vsaka mapa, ki vsebuje podmapo .git z zgoraj navedenimi podatki.

2.1. Zgoscevalna funkcija

Git ne shranjuje datotek z obi¢ajnimi imeni, ampak za ime uporabi 160 bitno stevilo (40 mestno Stevilo v
16-tiskem zapisu), ki ga izracuna iz vsebine datoteke. Git za izracun imena uporabi zgoscevalno funkcijo.
Naj bo B mnoZica vseh moznih podatkovnih nizov(besedil), n-bitna zgoscevalna funkcija je funkcija

H:B—{0,1,..,2" — 1}, (1)

ki vsakemu besedilu b priredi n-bitno vrednost H (b). Vrednosti zgoscevalne funkcije H (b) pravimo
zgostitev vsebine b. Funkcija H, je izbrana tako, da sprememba enega samega bita v besedilu b € B
spremeni vrednost H (b). Poleg mora dobra zgo$¢evalna funkcija zagotoviti, da je porazdelitev vrednosti
H (b) ¢im blizje enakomerni porazdelitvi. To pomeni, da so vse vrednosti H (b) priblizno enako verjetne.

Git uporablja zgoscevalno funkcijo SHA 1. Funkcija SHA1 je posebna implementacija zgoscevalne funkcije,
ki se je uporabljala v kriptografiji'.

Ko datoteko z vsebino b zabelezimo v Git repozitorij, Git izratuna zgostitev vsebine H (b) in jo shrani v
datoteko z imenom H (b) v git/objects? Vsebina b je tako vedno dostopna pod imenom, ki je enako njeni
zgostitvi H (b). Tako dobimo vsebinsko naslovljivo shrambo objektov, ki je ena od bistvenih znacilnosti
Gita. Ta nac¢in shranjevanja omogoca, da lahko vedno preverimo, ¢e ima shranjenjena vsebina isto
zgostitev, kot je njeno ime. Lahko tudi shranimo ve¢ razli¢ic iste datoteke, saj ima vsaka razlic¢ica druga¢no
zgostitev. Zgostitev sluzi tudi kot kontrola, ¢e je prislo do kvaritve podatkov, ki so shranjeni v Git
repozitoriju.

2.1.1. Kolizije zgostitev in rojstnodnevni paradoks

Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Kaj pa ¢e imata dve razli¢ni vsebini isto
zgostitev. Funkcija H ni injektivna, saj je mnozica nizov, bistveno vecja od mnozice zgostitev. To pomeni,
da imata lahko dve razli¢ni datoteki enako zgostitev. Ce bi prislo do tega, bi Git shranil le eno datoteko, za
drugo pa bi predpostavil da je Ze shranjena. Na sreco je verjetnost, da bi se kaj takega zgodilo izjemno
majhna. Kljub temu, da zgos$cevalna funkcija H ni injektivna, je verjetnost, da bi imela dva naklju¢no
izbrana podatkovna niza isto zgostitev (vrednost H) zelo majhna. Zato Git predpostavi, da je niz b enoli¢no
doloc¢en z njegovo zgostitvijo H (b). Kako bi ocenili verjetnost, da pride do kolizije zgostitev?

Koliko datotek bi morali shraniti v Git, da bi z znatno verjetnostjo prislo do kolizije? Vprasanje je povezano
z rojstnodnevnim problemom. Kako velika naj bo skupina ljudi, da bo vsaj 50% verjetnost, da imata dve
osebi na isti dan rojstni dan? Velikost skupine je presenetljivo majhna(23), zato rojstnodnevnei problem
vcasih poimenujemo paradoks. Vprasanje lahko matemati¢no zastavimo tako. Naklju¢no izberemo n < d

'Leta 2017 so raziskovalci iz CWI Amsterdam in Google Research nasli prvi prakti¢ni primer dveh razli¢nih pdf datotek, ki
imata isto SHA1 zgostitev[1]. Opisan napad so poimenovali SHAttered. Git je zato z verzijo v2.13.0 zacel uporabljati verzijo
SHAZ1, ki je odporna proti napadu SHAttered. Kljub temu razvijalci Gita nacrtujejo, da bodo SHA1 postopoma nadomestili z

?V resnici Git shrani vsebino v datoteko z imenom hghy...hy v mapi hy hy, Kjer je hqhghg...hyq zapis H(b) v 16-tiskem
sistemu. Datoteka, katere vsebina ima zgostitev H (b) enako 8dd6d4bdaeff93016bd49474b54a911131759648 bo shranjena
Vv .git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648

2

https://en.wikipedia.org/wiki/Content-addressable_storage

stevil iz mnozice {1, 2, ..., h}, tako da je vsaka izbira enakomerno porazdeljena. Kolik3na je verjetnost
p(n, h), da bosta vsaj dve stevili enaki? Verjetnost p(n, h) izratunamo elementarno z verjetnostjo
nasprotnega dogodka:

1_p(n’h):h.(h—1)-f.L-7Eh—n+1);ﬁ(l_@) -

Ce izraz logaritmiramo, dobimo

log(1 —p(n,h)) =zlog(1—%) <—g%=—%. (3)

Res! Logaritem je konveksna funkcija, zato so vrednosti manjse od vrednosti na tangenti log(l — E) =
log(l—z) <z =%

Od tod izpeljemo oceno za p(n, h)

[N}

n(n—1) _

p(n,h) >1—e " 2n ~1—e 2.

SR
—~~
i
~—

n2
Za vrednosti 1 < n < h je 1 — e~ 2% tudi dobra aproksimacija za p(n, h).

Da bi odgovorili kako odporna je zgos¢evalna funkcija na morebitne kolizije, moramo resiti obratno
nalogo: najve¢ koliko stevil n(p, d) lahko izberemo, da bosta med izbranimi 3tevili vsaj dve enaki z
verjetnostjo manjso od p € [0, 1]. Natan¢en odgovor na to vprasanje ni tako preprost [2]. Lahko pa
uporabimo oceno (Enacba 4) in ¢ez palec ocenimo:

—n? ~ log(1 —p) =

n(p, h) ~ 2hlog<%> ~ V2%, (5)

-Dp

Funkcija log(ﬁ) zelo pocasi naras¢a, ko se p priblizuje 1, zato jo lahko zanemarimo. Ce je zgo$cevalna
funkcija 160 bitna, kot je primer za SHA1, je n ~ V2160 ~ 280 Znatna verjetnost, da pride do kolizije

280

zgostitev, bi se pojavila, ko bi shranili 2°” razli¢nih datotek v Git. Raziskovalci, ki so razvili napad

SHAttered, pa so potrebovali zgolj priblizno 2%3 primerov, da so prisli do kolizije.

2.2. Datote¢na drevesa

V vsebinsko naslovljivo shrambo objektov lahko shranimo vsebino datotek in njihovih prejs$njih razlicic. A
kako ohranimo informacijo o imenu datotek in drevesni strukturi mape? Git za to ustvari nov tip objekta
drevo (angl. tree), ki hrani preprost seznam imen datotek in naslovov na vsebino datotek v mapi. Naslov na
vsebino datoteke b je seveda zgostitev vsebine H (b). Seznam imen datotek in zgostitev je preprosta
tekstovna datoteka, za katero lahko izra¢unamo zgostitev. Zgostitev datote¢nega drevesa natanko doloca
tako imena datotek, kot tudi vsebino datotek, ki so vsebovane v mapi. Ce se katerakoli datoteka ali ime
datoteke v mapi spremeni, se bo spremnila tudi njena zgostitev in posledi¢no zgostitev za drevo. Poleg
posameznih datotek, lahko drevo vsebuje tudi poddrevesa. Tako lahko rekurzivno ustvarimo drevesno
podatkovno strukturo, ki zajema mapo z datotekami in podmapami v poljubni globini.

100644 blob 33476f495lafc28d5ac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1lbOfcfc blabla.txt
040000 tree ae247f2a35aadade5863aec2475cf13020304b06 podmapa

Tabela 1: Vsebina mape v Gitu je preprost seznam datotek in podmap ter zgostitev njihove vsebine

Poglejmo si primer. Denimo, da imamo v naslednjo strukturo datotek in podmap

F— bla.txt (vsebina: bla)
— blabla.txt (vsebina: blabla)
L— podmapa

L— pla.txt (vsebina: bla)

Git bo shranil naslednje objekte v vsebinsko naslovljivo shrambo:
« vsebino datoteke bla.txt:

Zgoscena vrednost: bcc1382241e267cf790cabb3afedfde6dcf1072f
bla

« vsebino datoteke blabal.txt:

Zgoscena vrednost: 2ce22b4dc77442103f095503f1205937c1b0Ofcfc
blabla

« seznam datotek v mapi podmapa:

Zgoscena vrednost: ae247f2a35aadade5863aec2475cf13020304b06
100644 blob bccl382241e267cf790cabb3afe9dfde6dcf1072f bla.txt

« seznam datotek v korenski mapi:

Zgoscena vrednost: 473e0bbfc9de64fdcalfe611e5666788ddf664ca

100644 blob 33476f4951afc28d5ac2dc0d42d82fl7ac817de2 bla.txt
100644 blob 2ce22b4dc77442103f09550311205937c1bOfcfc blabla.txt
040000 tree ae247f2a35aadade5863aec2475c¢f13020304b06 podmapa

Git z uporabo zgostitve kot kazalca na vsebino, vsebino mape postavi v podatkovno strukturo, ki jo
matematic¢no lahko opisemo z usmerjenim aciklicnim grafom. Ko je vsebina datotek enaka(npr. bla. txt in
mapa/bla.txt), Git shrani le eno kopijo, ki je dostopna v datoteki .git/objects/bc/
c1382241e267cf790cabb3afedfde6dcfl072f. Zato datoteéno drevo v Gitu ni nujno predstavljeno kot
drevo, ampak kot usmerjen acikli¢ni graf.

2ce22b) blabla.txt 4730

blabla

drevo

X
pla-
®6Qa
bccl38

(—
bla bla.txt drevo

ae247f

Slika 1: Primer datote¢nega grafa povezanega z zgostitvami. Zaradi preglednosti smo izpisali le prvih 6
znakov zgostitve.

Posledi¢no lahko vsebino celotne mape opisemo z eno samo zgostitvijo. Ce spremenimo vsebino, ime ali
lokacijo datoteke, bo sprememba vplivala na zgostitev spremenjene vsebine in sprememba bo splavala na
povrsje do zgostitve za korensko mapo. Zgostitev sluzi tako kot identifikator vsebine, kot tudi kot
kontrolna vsota, ki omogoca detekcijo sprememb.

Opomba

Podatkovna struktura objektov v Gitu je podobna Merklejevim drevesom. Razlika je v tem, da Gita hrani le
eno kopijo datotek z identicno vsebino, zato dobimo usmerjen aciklicni graf in ne drevesa. Postopek je
podoben verizenju blokov, ki se uporablja v kriptovalutah.

Opomba

Dostop do objekta je mogoc, Ce poznamo zgostitev njegove vsebine. To pomeni, da je referenca na posamezen
objekt v Gitu preprosto zgostitev(angl. hash) vsebine tega objekta. Po drugi strani je vsebina objekta dolocena
z njegovo zgostitvijo. To pomeni, da lahko enostavno preverimo verodostojnost vsebine, ki je shranjena v
Gitu. Git hrani skladisce objektov v mapi .git/objects.

Podrobnosti o tem, kako Git hrani podatke, si lahko preberete v knjigi Pro Git [3, pog. 10.2].
3. Zgodovinski graf sprememb

V prejsnjem poglavju smo videli, kako Git hrani vsebino celotne mape in kako je mogoce do vsebine
dostopati ¢e poznamo zgostitvijo korenskega mape. Zgodovinsko drevo sprememb je preprosta razsiritev
omenjene podatkovne strukture.

3.1. Posnetki stanja

Osnovna enota v Gitu je Vnos (angl. commit). Vnos je posnetek stanja zabelezenih datotek v trenutku, ko
je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje e metapodatke o avtorju, datumu vnosa in
opisom sprememb. Podobno kot objekt tipa drevo, je tudi vnos objekt v vsebinsko naslovljivi shrambi, ki
ima dolo¢eno zgostitev vnosa. Zgostitev vnosa je natanko dolocena z vsebino shranjenih datotek in
metapodatkov vnosa.

Zgoscena vrednost: 8dd6d4bdaeff93016bd49474b54a911131759648

tree 65c47feec7465e80492620a48206793e078702e0
parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Tabela 2: Primer vnosa v Gitu. Vnos vsebuje zgostitev posnetka mape(tree), zgostitev starSevskega vnosa
(parent) in metapodatke. Tudi sam vnos je natan¢no dolocen z zgostitevjo.

Vsak vnos je povezan s to¢no dolo¢enim posnetekom vsebine korenskega datote¢nega drevesa, ki ga
identificira zgostitev. Poleg tega so posamezni vnosi so povezani v usmerjen aciklicen graf (DAG), ki
predstavlja zgodovino sprememb. Vsak vnos je vozlisce v grafu. Vsak vnos izhaja iz enega ali vec¢
starSevskih vnosov. Izjema je prvi vnos. Povezave v grafu povezujejo vnose z njihovimi starsi.

ddedos8 28782c

32922 d2a671

Slika 2: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih izhaja.

Git hrani zgodovino sprememb v vsebinsko naslovljivi shrambi objektov, ki hrani tri vrste objektov:
« blob: vsebina datotek,

+ tree: vsebina mape,

« commit: posnetek vsebine v dolocenem trenutku.

Objekti so poevazni v usmerjen aciklicni graf. Podgraf na vnosih dolo¢a zgodovino sprememb. Naslovi
objektov so zgostitve vsebine objekta, zato je zagotovljena verodostojnost shranjenih podatkov.

vsebina (blob) drevesa (tree)

bccl38

bla %
Sel2fg

vnosi (commit)

7e43al

‘o\a‘o\a-bd koren
2ce22b /

b

blabla %
32e4f1

Prvi vnos

T stars

4ef531

plaixt koren) Popravi bla.txt
33476f /

bla!

Slika 3: Vsebinsko naslovljiva shramba objektov v Gitu. Naslovi so zgostitve vsebine. Shramba vsebuje dva
vnosa. V prvem vnosu smo dodali dve datoteki bla. txt in blabla.txt, v drugem vnosu pa smo spremenili
le vsebino datotoeke bla. txt.

4. Kazalci: veje in znacke

Poleg objektov kot so vnosi, posnetki map in posnetki datotek pozna git Se reference. Reference so kazalci z

dolo¢enim imenom na posamezen vnos.
E main)

98ff21 4e9%6al

e23d19 3943eb

=

v-1.0
Slika 4: Veja (angl. branch) ali znacka(angl. tag) je preprost kazalec na posamezen vnos(angl. commit).

Referenc git ne hrani v skladis¢u objektov, temve¢ posebej v mapi .git/refs. Reference vezane na
posamezen repozitorij in se lahko razlikujejo med razli¢nimi kloni dolocenega repozitorija.

Veja (angl. branch) je posebne vrste referenca, ki se premika, ko dodajamo nove vnose. Vsaki¢ ko
ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni vnos.

Znacka (angl. tag) je referenca, ki je staticna in se ne premika ve¢, ko jo enkrat ustvarimo.

: main % main)

~

e23d19 3943eb 98ff21 4e9%6al
? v-1.0)

Slika 5: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, znacka v-1.0 pa ostane tam, kjer je
bila.

Opomba

Veje in znacke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose. Pomen
posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja razlicne veje za razlicne
namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production, development
in podobno oznacujejo razlicne stopnje razvoja programske opreme, veje s predpono feature- oznacujejo
razvoj novih funkcionalnosti.

Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git repozitoriju. Za Git so vse veje in znacke zgolj
preprosti kazalci na dolocen vnos.

HEAD je posebna referenca, ki kaZe na trenutno aktiven vnos. Vnos, na katerega kaze HEAD bo starsevski

vnos naslednjeg vnosa, ki ga bomo dodali.
; main)

e23d19 3943eb 98FF21 K- 4e96al |

) HEAD) index |
Slika 6: HEAD je referenca na trenutno aktiven vnos. Index vsebuje spremembe, ki bodo zabeleZene v
naslednjem vnosu.

4.1. Povzetek

Povzemimo sedaj, kaj smo spoznali o podatkovnem modelu Gita. V vsebinsko naslovljivi shrambi hrani Git

posnetke stanja celotne mape, ki ga vodimo v repozitoriju skupaj z metapodatki o spremembah.

Najpomembnejsa pojma sta:

» Vnos (angl. commit) je posnetek trenutnega stanja projekta, shranjen kot vozlis¢e v zgodovinskem
grafu, ki vsebuje posnetek stanja datotek ter metapodatke (avtor, ¢as, sporo¢ilo).

. zgostitev vnosa (angl. commit hash) je 40-mestna heksadecimalna vrednost, izra¢unana s SHA-1, ki
enoli¢no identificira vnos na podlagi vsebine posnetka in metapodatkov.

Izven shrambe objektov hrani Git Se reference na posamezne vnose. Poznamo dve vrsti referenc:

 Veja (angl. branch) je premicna reference, ki kaze na dolofen vnos v zgodovini in se samodejno
premakne naprej, ko dodajamo nove vnose. Veje omogocajo vzporedne razvojne linije ki so med sabo
neodvisne.

« Oznaka (angl. tag) je staticna referenca, ki trajno kaze na dolocen vnos. Za razliko od veje se oznaka,
nikoli ne premika samodejno, zato se uporablja predvsem za oznaevanje pomembnih toc¢k v zgodovini,
kot so izdaje ali stabilne verzije.

« HEAD je posebna oznaka, ki kaze na trenutno aktiven vnos v delovni kopiji.

Omenimo $e dva pojma, ki jih uporabljamo pri delu z Gitom:

+ Delovna kopija (angl. workout copy) je mapa v kateri urejamo datoteke, ki jih nato vnesemo v Git. V
delovni kopiji imajo na zacetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa (HEAD).
Spremembe, ki jih naaredimo na delovni kopiji lahko zabelezimo v nov vnos.

« Oddaljen repozitorij (angl. remote) je povezava(url) na isti repozitorij na drugem
racunalniku(ponavadi strezniku), s katerim lahko izmenjujemo vsebino.

Opomba

Gitov podatkovni model omogoca, da je vecina operacij v Gitu obrnljivih. To pomeni, da lahko repozitorij
povrnemo v prejsnje stanje. Obicajne operacije le dodajajo nove vnose in starih ne brisejo. Prav tako se v
zgodovinsko drevo le dodaja nove povezave in starih se ne brise. Zato daje delo z Gitom uporabniku
samozavest, da brez strahu spreminja vsebino, saj se lahko vedno vrne v ¢asu nazaj, kot da bi imel ¢asovni
stroj.

Nekatere operacije pa tudi briSejo vnose (npr. git rebase). Takim operacijam recemo, da spreminjajo
zgodovino. Uporabniki morajo biti pri uporabi operacij, ki spreminjajo zgodovino posebej pazljivi, da cesa
trajno ne zamocijo.

5. Git ukazi kot operacije na grafu

Ko smo opremljeni z razumevanjem podatkovnega modela Gita, razlozimo kaj pomenijo posamezne
operacije, ki jih Git omogoca. Ukazov ne bom prevajal, ampak jih bom navedel kot jih pozna program git.

5.1. Checkout

Ukaz
git checkout referenca

spremeni datoteke v delovni kopiji tako, da se ujemajo z vnosom, na katerega kaZze referenca. Poleg tega
prestavi oznako HEAD na isti vnos. Ce je referenca veja, jo nastavi, kot aktivno vejo. Ce je referenca oznaka
ali zgostitev vnosa, priedmo v stanje brez aktivne veje (angl. deteached HEAD).

5.2. Commit

Ukaz
git commit -m "Sporoc¢ilo za vnos"

ustvari nov vnos, ki kaZe na stanje v ¢akalnici (angl. staging area ali index). V zgodovinskem grafu ustvari
novo vozlisce, ki je povezano s prej$njim vnosom. Poleg tega prestavi aktivno vejo in oznako HEAD na novo
ustvarjeni vnos.

5.3. Add

Ukaz
git add bla.txt

doda vsebino spremenjene datoteke bla. txt v ¢akalnico. Ukaz ne spreminja zgodovinskega grafa, pac pa
doda novo vsebino in datote¢na drevesa, ki vsebujejo spremembe v shrambo objektov. Vsebina ¢akalnice
bo zabeleZena v naslednjem vnosu.

5.4. Pull

Ukaz
git pull

pobere vsebino(objekte in reference) iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno.
Shrambi objektov se preprosto doda nove objekte, ki so v oddaljeni veji. Ce je lokalna veja prednik
oddaljene, se lokalna veja enostavno prestavi, da kaze na isti vnos, kot oddaljena veja. V nasprotnem
primeru, mora uporabnik posredovati in razresiti morebitne konflikte.

5.5. Push

Ukaz
git push

potisne novo vsebino na oddaljeni repozitorij. Push deluje obratno kot pull. Ukaz je uspe$no izveden le, ¢e
je oddaljena veja prednica lokalne veje in ni konflikotov.

5.6. Fetch

Ukaz
git fetch

pobere novo vsebino (vnose, veje in oznake) iz oddaljenega repozitorija. Pri tem ne more priti do
konfliktov, ker git preprosto doda nove objekte v shrambo in obstojeéih objektov nikakor ne spreminja.
Oddaljenim vejam in oznakam preprosto doda predpono z imenom oddaljenega repozitorija.

6. Reset

Ukaz
git reset referenca

spremeni kam kaze trenutno izbrana veja. Ukaz ne spremeni zgodovinskega drevesa, ampak le to, na kateri
vnos kaZze trenutno izbrana veja.

6.1. Merge

Ukaz
git merge referenca

ustvari nov vnos, ki zdruzi dve lo¢eni veji v eno (trenutno izbrano in referenco). Nov vnos ima dva starsa:
vnos na katerega kaze trenutna veja in vnos, na katerega kaze referenca. Ce pride do konfliktov, jih mora
uporabnik sam razresiti, preden se ustvari nov vnos.

6.2. Rebase

Ukaz
git rebase referenca

prestavi vnose v trenutno izbrani veji tako, da so potomci vnosa, na katerega kaze referenca. Med ukazi, ki
smo jih spoznali, je ta ukaz edini, ki lahko povzro¢i izgubo podatkov. Obicajno ukazi le dodajajo nove
vnose in prestavljajo reference. Zato je ve¢ina ukazov v Gitu varna, v smislu, da jih lahko kasneje
preklicemo in pridemo nazaj na prej$nje stanje. Ukaz rebase pa spremeni zgodovino in ga ne moremo
preklicati, saj trenutne vnose nadomesti z novimi in stare vnose pobrise®.

6.3. Zakljucek

Spoznali smo, kako deluje Git in s katere matemati¢nime pojme uporablja za model. Opis dela z Gitom
presega namen tega dokumenta, zato vas raje usmerim na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

*Obstaja enostaven nacin, da tudi rebase lahko prekli¢emo. Na zadnji vnos, ki ga Zelimo prestaviti preprosto postavimo
novo referenco(vejo ali oznako). To povzro¢i, da se stari vnosi ne pobriSejo tudi, ko se izvede ukaz rebase.

9

https://git-scm.com/cheat-sheet

Pri pisanju tega ¢lanka sem sevada uporabljal Git. V javno dostopnem repozitoriju [4] si lahko ogledate
celotno zgodovino nastajanja tega ¢lanka.

Pri pripravi dokumenta sem uporabil Gemini 3. Vse odgovore sem preveril in uredil po svoje.

Literatura

[1] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, in Y. Markov, ,The First Collision for Full SHA-1% v
Advances in Cryptology — CRYPTO 2017, J. Katz in H. Shacham, Ur., Cham: Springer International
Publishing, 2017, str. 570-596.

[2] D. Brink, ,A (probably) exact solution to the Birthday Problem®, The Ramanujan Journal, let. 28, st. 2,
str. 223-238, jun. 2012, doi: 10.1007/s11139-011-9343-9.

[3] S.Chacon in B. Straub, ,,10.2 Git Internals - Git Objects®, Pro Git. Pridobljeno: 3. januar 2026. [Na
spletu]. Dostopno na: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

[4] M. Vuk, ,git-intro®. Pridobljeno: 3. januar 2026. [Na spletu]. Dostopno na: https://git.fri.uni-lj.si/martin.
vuk/git-intro

10

https://git.fri.uni-lj.si/martin.vuk/git-intro
https://doi.org/10.1007/s11139-011-9343-9
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git.fri.uni-lj.si/martin.vuk/git-intro
https://git.fri.uni-lj.si/martin.vuk/git-intro

	1. Kaj je Git?
	2. Podatkovno skladišče
	2.1. Zgoščevalna funkcija
	2.1.1. Kolizije zgostitev in rojstnodnevni paradoks

	2.2. Datotečna drevesa

	3. Zgodovinski graf sprememb
	3.1. Posnetki stanja

	4. Kazalci: veje in značke
	4.1. Povzetek

	5. Git ukazi kot operacije na grafu
	5.1. Checkout
	5.2. Commit
	5.3. Add
	5.4. Pull
	5.5. Push
	5.6. Fetch

	6. Reset
	6.1. Merge
	6.2. Rebase
	6.3. Zaključek

	Literatura

