
Git za matematike

Martin Vuk

Git je program, ki omogoča vodenje zgodovine različic datotek v neki
mapi(direktoriju). V glavnem se uporablja za upravljanje z izvorno kodo pri razvoju
računalniških programov. Mnogi med nami pa ga uporabljajo tudi pri pisanju besedil
v LaTeX-u. Poleg tega, da Git hrani zgodovino sprememb, tudi omogoča da več ljudi
hkrati sodeluje pri urejanju istih datotek. Ogledali si bomo, kako Git deluje. Opisali
bomo, kako Git uporabi zgoščevalne funkcije, Merklejeva drevesa in usmerjene aciklične

grafe, da shrani zgodovino različic in omogoči hkratno urejanje vsebine. Matematični
model, ki ga Git uporablja je v resnici zelo preprost in njegovo razumevanje nas
lahko reši marsikatere zagate, ki nastane med njegovo uporabo.

1. Kaj je Git?

Git je kot časovni stroj za datoteke. Uporabniku omogoča, da vidi pretekle različice datotek, spreminja
datoteke, brez skrbi, da bi kaj pokvaril in datoteke deli z drugimi. Poleg časovnega stroja je Git
razpršeno skladišče datotek. Omogoča, da datoteke hkrati ureja več uporabnikov na različnih
računalnikih in kasneje spremembe združi.

Git hrani vsebino mape z datotekami in celotno zgodovino različic datotek iz preteklosti. Za vsako različico
hrani Git zapis o avtorju, datumu in opis sprememb, ki so nastale v primerjavi s predhodno različico. Vse te
imformacije dajejo podroben pregled nad zgodovino sprememb.

Opomba

Git in GitHub nista eno in isto. Ljudje pogosto mešajo Git in GitHub. Git je program, ki si ga lahko vsakdo

namesti in poganja na svojem računalniku. Program Git je ustvaril Linus Torvalds, da bi lažje upravljal z

izvorno kodo za jedro operacijskega sistema Linux. GitHub je javno spletišče, ki je namenjeno skladiščenju

Git repozitorijev.

Opomba

Sisteme, ki omogočajo hranjenje preteklih različic datotek, imenujemo sistemi za nadzor različic (angl.

version control system (VCS)) ali sistemi za upravljanje z izvorno kodo (angl. Source Code Management

(SCM)).

Poleg nadzora različic Git omogoča hkratno spreminjanje datotek več uporabnikov na različnih

računalnikih. Zato je Git distribuiran sistem za nadzor različic (angl. Distributed Version Control System

(DVCS)).

V nadaljevanju bomo obravnavali nasledjne teme:
• Podatkovno skladišče: Kako Git uporablja zgoščevalno funkcijo in Merklejeva drevesa za hranjenje

posnetkov vsebine mape.
• Zgodovina sprememb: Kako zgodovino predstavimo z usmerjenim acikličnim grafom, v katerem so

vozlišča različice, povezave pa povežejo različice z njihovimi neposrednimi predhodniki.
• Reference: Kako preproste reference (kazalci) na vsebino omogočajo bliskovito preklaplanje med

različicami in preprečijo popolno zmešnjavo, ko več ljudi hkrati spreminja iste datoteke.

1

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://sl.wikipedia.org/wiki/Zgo%C5%A1%C4%8Devalna_funkcija
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

2. Podatkovno skladišče

Ko ustvarimo nov Git repozitorij, Git ustvari podmapo z imenom .git z vsemi podatki, ki jih Git potrebuje.
Git v mapi .git hrani različne stvari:
• vsebino datotek, ki smo jih dodali v repozitorij,
• drevesno strukturo korenske mape, ki jo hranimo v repozitoriju,
• posnetke stanja v različnih trenutkih s podatki o avtoju, datumu in opisu sprememb,
• kazalce na posamezne posnetke stanja.

Git repozitorij je vsaka mapa, ki vsebuje podmapo .git z zgoraj navedenimi podatki. Podrobnosti o tem,
kako Git hrani podatke, si lahko preberete v knjigi Pro Git [1, pog. 10.2].

2.1. Zgoščevalna funkcija

Git ne shranjuje datotek z običajnimi imeni, ampak za ime uporabi 160 bitno število (40 mestno število v
16-tiškem zapisu), ki ga izračuna iz vsebine datoteke. Git za izračun imena uporabi zgoščevalno funkcijo.

Naj bo 𝐵 množica vseh možnih podatkovnih nizov(besedil), 𝑛-bitna zgoščevalna funkcija je funkcija

𝐻 : 𝐵 → {0, 1, …, 2𝑛 − 1}, (1)

ki vsakemu besedilu 𝑏 priredi 𝑛-bitno vrednost 𝐻(𝑏). Vrednosti zgoščevalne funkcije 𝐻(𝑏) pravimo

zgostitev vsebine 𝑏. Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Kaj pa če imata dve različni

vsebini isto zgostitev? Funkcija 𝐻 ni injektivna, saj je množica nizov, bistveno večja od množice zgostitev.
To pomeni, da imata lahko dve različni datoteki enako zgostitev. Če se to zgodi, rečemo, da pride do kolizije

zgostitve. V primeru kolizije zgostitve bi Git shranil le eno datoteko, za drugo pa bi predpostavil da je že

shranjena. Zato je funkcija 𝐻 izbrana tako, da sprememba enega samega bita v besedilu 𝑏 ∈ 𝐵 spremeni

vrednost 𝐻(𝑏) in je porazdelitev vrednosti 𝐻(𝑏) čim bližje enakomerni porazdelitvi. To pomeni, da so vse

vrednosti 𝐻(𝑏) približno enako verjetne. Na ta način zmanjšamo verjetnost kolizije(glej Poglavje 2.3).

Verjetnost kolizije je izjemno majhna, zato Git lahko predpostavi, da je niz 𝑏 enolično določen z njegovo

zgostitvijo 𝐻(𝑏).

Git uporablja 160 bitno zgoščevalno funkcijo SHA1. Funkcija SHA1 je posebna implementacija zgoščevalne
funkcije, ki se je uporabljala v kriptografiji1.

Ko datoteko z vsebino 𝑏 zabeležimo v Git repozitorij, Git izračuna zgostitev vsebine 𝐻(𝑏) in jo shrani v

datoteko z imenom 𝐻(𝑏) v git/objects2. Vsebina 𝑏 je tako vedno dostopna pod imenom, ki je enako njeni

zgostitvi 𝐻(𝑏). Tako dobimo vsebinsko naslovljivo shrambo objektov, ki je ena od bistvenih značilnosti
Gita. Ta način shranjevanja omogoča, da lahko vedno preverimo, če ima shranjenjena vsebina isto
zgostitev, kot je njeno ime. Lahko tudi shranimo več različic iste datoteke, saj ima vsaka različica drugačno
zgostitev. Zgostitev služi tudi kot kontrola, če je prišlo do kvaritve podatkov, ki so shranjeni v Git
repozitoriju.

2.2. Datotečna drevesa

V vsebinsko naslovljivo shrambo objektov lahko shranimo vsebino datotek in njihovih prejšnjih različic. A
kako ohranimo informacijo o imenu datotek in drevesni strukturi mape? Git za to ustvari nov tip objekta
drevo (angl. tree), ki hrani preprost seznam imen datotek in naslovov na vsebino datotek v mapi. Naslov na

1Leta 2017 so raziskovalci iz CWI Amsterdam in Google Research našli prvi praktični primer dveh različnih pdf datotek, ki
imata isto SHA1 zgostitev[2]. Opisan napad so poimenovali SHAttered. Git je zato z verzijo v2.13.0 začel uporabljati verzijo
SHA1, ki je odporna proti napadu SHAttered. Kljub temu razvijalci Gita načrtujejo, da bodo SHA1 postopoma nadomestili s
SHA-256.

2V resnici Git shrani vsebino v datoteko z imenom ℎ3ℎ4…ℎ40 v mapi ℎ1ℎ2, kjer je ℎ1ℎ2ℎ3…ℎ40 zapis 𝐻(𝑏) v 16-tiškem
sistemu. Datoteka, katere vsebina ima zgostitev 𝐻(𝑏) enako 8dd6d4bdaeff93016bd49474b54a911131759648 bo shranjena
v .git/objects/8d/d6d4bdaeff93016bd49474b54a911131759648

2

https://en.wikipedia.org/wiki/Content-addressable_storage

vsebino datoteke 𝑏 je seveda zgostitev vsebine 𝐻(𝑏). Seznam imen datotek in zgostitev je preprosta
tekstovna datoteka, za katero lahko izračunamo zgostitev. Zgostitev datotečnega drevesa natanko določa
tako imena datotek, kot tudi vsebino datotek, ki so vsebovane v mapi. Če se katerakoli datoteka ali ime
datoteke v mapi spremeni, se bo spremnila tudi njena zgostitev in posledično zgostitev za drevo. Poleg
posameznih datotek, lahko drevo vsebuje tudi poddrevesa. Tako lahko rekurzivno ustvarimo drevesno
podatkovno strukturo, ki zajema mapo z datotekami in podmapami v poljubni globini.

100644 blob 33476f4951afc28d5ac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1b0fcfc blabla.txt
040000 tree ae247f2a35aadade5863aec2475cf13020304b06 podmapa

Tabela 1: Vsebina mape v Gitu je preprost seznam datotek in podmap ter zgostitev njihove vsebine

Poglejmo si primer. Denimo, da imamo v naslednjo strukturo datotek in podmap

├── bla.txt (vsebina: bla)
├── blabla.txt (vsebina: blabla)
└── podmapa
 └── bla.txt (vsebina: bla)

Git bo shranil naslednje objekte v vsebinsko naslovljivo shrambo:
• vsebino datoteke bla.txt:

Zgoščena vrednost: bcc1382241e267cf790ca6b3afe9fde6dcf1072f

bla

• vsebino datoteke blabal.txt:

Zgoščena vrednost: 2ce22b4dc77442103f095503f1205937c1b0fcfc

blabla

• seznam datotek v mapi podmapa:

Zgoščena vrednost: ae247f2a35aadade5863aec2475cf13020304b06

100644 blob bcc1382241e267cf790ca6b3afe9fde6dcf1072f bla.txt

• seznam datotek v korenski mapi:

Zgoščena vrednost: 473e0bbfc9de64fdca00e611e5666788ddf664ca

100644 blob 33476f4951afc28d5ac2dc0d42d82f17ac817de2 bla.txt
100644 blob 2ce22b4dc77442103f095503f1205937c1b0fcfc blabla.txt
040000 tree ae247f2a35aadade5863aec2475cf13020304b06 podmapa

Git z uporabo zgostitve kot kazalca na vsebino, vsebino mape postavi v podatkovno strukturo, ki jo
matematično lahko opišemo z usmerjenim acikličnim grafom. Ko je vsebina datotek enaka(npr. bla.txt in
mapa/bla.txt), Git shrani le eno kopijo, ki je dostopna v datoteki .git/objects/bc/
c1382241e267cf790ca6b3afe9fde6dcf1072f. Zato datotečno drevo v Gitu ni nujno predstavljeno kot
drevo, ampak kot usmerjen aciklični graf.

3

bla.
txt

map
a

bla.txt

blabla.txt

bcc138

bla

2ce22b

blabla

ae247f

drevo

473e0b

drevo

Slika 1: Primer datotečnega grafa povezanega z zgostitvami. Zaradi preglednosti bomo v slikah izpisali le
prvih 6 znakov zgostitve.

Posledično lahko vsebino celotne mape opišemo z eno samo zgostitvijo. Če spremenimo vsebino, ime ali
lokacijo datoteke, bo sprememba vplivala na zgostitev spremenjene vsebine in sprememba bo splavala na
površje do zgostitve za korensko mapo. Zgostitev služi tako kot identifikator vsebine, kot tudi kot
kontrolna vsota, ki omogoča detekcijo sprememb.

Opomba

Podatkovna struktura objektov v Gitu je podobna Merklejevim drevesom. Razlika je v tem, da Gita hrani le

eno kopijo datotek z identično vsebino, zato dobimo usmerjen aciklični graf in ne drevesa. Postopek je

podoben veriženju blokov, ki se uporablja v kriptovalutah.

Opomba

Dostop do objekta je mogoč, če poznamo zgostitev njegove vsebine. To pomeni, da je referenca na posamezen

objekt v Gitu preprosto zgostitev(angl. hash) vsebine tega objekta. Po drugi strani je vsebina objekta določena

z njegovo zgostitvijo. To pomeni, da lahko enostavno preverimo verodostojnost vsebine, ki je shranjena v

Gitu. Git hrani skladišče objektov v mapi .git/objects.

2.3. Kolizije zgostitev in rojstnodnevni paradoks

Git hrani datoteke pod imeni, ki so enaka zgostitvi vsebine. Če imata dve datoteki z različno vsebino isto
zgostitev, Git shrani le eno datoteko in pride do izgubil podatkov. Git se zanaša na to, da je verjetnost za to
izjemno majhna. Kako bi ocenili to verjetnost?

Koliko datotek bi morali shraniti v Git, da bi z znatno verjetnostjo prišlo do kolizije? Vprašanje je povezano

z rojstnodnevnim problemom. Kako velika naj bo skupina ljudi, da bo vsaj 50% verjetnost, da imata dve
osebi na isti dan rojstni dan? Velikost skupine je presenetljivo majhna(23), zato rojstnodnevnei problem

imenujemo tudi rojstnodnevni paradoks. Vprašanje zastavimo matematično. Naključno izberemo 𝑛 < 𝑑

števil iz množice {1, 2, …, ℎ}, tako da je vsaka izbira enakomerno porazdeljena. Kolikšna je verjetnost

𝑝(𝑛, ℎ), da bosta vsaj dve števili enaki? Verjetnost 𝑝(𝑛, ℎ) izračunamo elementarno z verjetnostjo
nasprotnega dogodka:

1 − 𝑝(𝑛, ℎ) = ℎ ⋅ (ℎ − 1)⋯(ℎ − 𝑛 + 1)
ℎ𝑛 = ∏

𝑛−1

𝑘=1
(1 − 𝑘

ℎ
). (2)

Če izraz logaritmiramo, dobimo

log(1 − 𝑝(𝑛, ℎ)) = ∑
𝑛−1

𝑘=1
log(1 − 𝑘

ℎ
) < − ∑

𝑛−1

𝑘=1

𝑘
ℎ

= −𝑛(𝑛 − 1)
2ℎ

. (3)

Res! Logaritem je konveksna funkcija, zato so vrednosti manjše od vrednosti na tangenti log(1 − 𝑘
ℎ) =

log(1 − 𝑥) < 𝑥 = 𝑘
ℎ .

Od tod izpeljemo oceno za 𝑝(𝑛, ℎ)

𝑝(𝑛, ℎ) > 1 − 𝑒−𝑛(𝑛−1)
2ℎ ≈ 1 − 𝑒−𝑛2

2ℎ . (4)

4

Za vrednosti 1 ≪ 𝑛 ≪ ℎ je 1 − 𝑒−𝑛2
2ℎ tudi dobra aproksimacija za 𝑝(𝑛, ℎ).

Da bi odgovorili kako odporna je zgoščevalna funkcija na morebitne kolizije, moramo rešiti obratno

nalogo: največ koliko števil 𝑛(𝑝, 𝑑) lahko izberemo, da bo verjetnost pojava dveh enakih števil manjša od

𝑝 ∈ [0, 1]? Natančen odgovor na to vprašanje ni tako preprost [3]. Lahko pa uporabimo oceno (Enačba 4)

in čez palec ocenimo vrednost 𝑛(𝑝, ℎ):

−𝑛2 ≈ log(1 − 𝑝) ⇒

𝑛(𝑝, ℎ) ≈ √2ℎ log(1
1 − 𝑝

) ≈
√

2ℎ.
(5)

Funkcija √log(1
1−𝑝) zelo počasi narašča, ko se 𝑝 približuje 1, zato jo lahko zanemarimo. Če je zgoščevalna

funkcija 160 bitna, kot na primer SHA1, je 𝑛 ≈
√

2160 ≈ 280. Znatna verjetnost, da pride do kolizije

zgostitev, bi se pojavila, ko bi shranili 280 različnih verzij datotek v Git. Raziskovalci, ki so razvili napad

SHAttered, so se posebej potrudili in so potrebovali „zgolj“ približno 263 primerov, da so prišli do kolizije.

3. Zgodovinski graf sprememb

V prejšnjem poglavju smo videli, kako Git hrani vsebino celotne mape in kako je mogoče do vsebine
dostopati če poznamo zgostitvijo korenskega mape. Zgodovinsko drevo sprememb je preprosta razširitev
omenjene podatkovne strukture.

3.1. Posnetki stanja

Osnovna enota v Gitu je Vnos (angl. commit). Vnos je posnetek stanja zabeleženih datotek v trenutku, ko
je bil ustvarjen. Poleg vsebine datotek vsak vnos vsebuje še metapodatke o avtorju, datumu vnosa in
opisom sprememb. Podobno kot objekt tipa drevo, je tudi vnos objekt v vsebinsko naslovljivi shrambi, ki
ima določeno zgostitev vnosa. Zgostitev vnosa je natanko določena z vsebino shranjenih datotek in
metapodatkov vnosa.

Zgoščena vrednost: 8dd6d4bdaeff93016bd49474b54a911131759648

tree 65c47feec7465e80492620a48206793e078702e0
parent 16f2994757f1213935b8edb9ae7fee3a8e9ec98d
author MV <mv@example.com> 1765235698 +0100
committer MV <mv@example.com> 1765235698 +0100

Dodaj bla

Tabela 2: Primer vnosa v Gitu. Vnos vsebuje zgostitev posnetka mape(tree), zgostitev starševskega vnosa
(parent) in metapodatke. Tudi sam vnos je natančno določen z zgostitevjo.

Vsak vnos je povezan s točno določenim posnetekom vsebine korenskega datotečnega drevesa, ki ga
identificira zgostitev. Poleg tega so posamezni vnosi so povezani v usmerjen acikličen graf (DAG), ki
predstavlja zgodovino sprememb. Vsak vnos je vozlišče v grafu. Vsak vnos izhaja iz enega ali več
starševskih vnosov. Izjema je prvi vnos. Povezave v grafu povezujejo vnose z njihovimi starši.

d93434 2ca420 dd0d98 28782c 710310

3f2922 d2a671

Slika 2: Vnosi v Gitu kot usmerjen graf. Vsak vnos(razen prvega) ima povezavo na vnose iz katerih izhaja.

Git hrani zgodovino sprememb v vsebinsko naslovljivi shrambi objektov, ki hrani tri vrste objektov:

5

• blob: vsebina datotek,
• tree: vsebina mape,
• commit: posnetek vsebine v določenem trenutku.

Objekti so poevazni v usmerjen aciklični graf. Podgraf na vnosih določa zgodovino sprememb. Naslovi
objektov so zgostitve vsebine objekta, zato je zagotovljena verodostojnost shranjenih podatkov.

starš

bla.txt

bla.txt

blabla.txt

blabla.txt

vsebina (blob) drevesa (tree) vnosi (commit)

bcc138

bla

2ce22b

blabla

33476f

bla!

5e12fg

koren

32e4f1

koren

7e43a1

Prvi vnos

4ef531

Popravi bla.txt

Slika 3: Vsebinsko naslovljiva shramba objektov v Gitu. Naslovi so zgostitve vsebine. Shramba vsebuje dva
vnosa. V prvem vnosu smo dodali dve datoteki bla.txt in blabla.txt, v drugem vnosu pa smo spremenili

le vsebino datotoeke bla.txt.

4. Kazalci: veje in značke

Poleg objektov kot so vnosi, posnetki map in posnetki datotek pozna git še reference. Reference so kazalci z
določenim imenom na posamezen vnos.

main

e23d19 3943eb 98ff21 4e96a1

v-1.0

Slika 4: Veja (angl. branch) ali značka(angl. tag) je preprost kazalec na posamezen vnos(angl. commit).

Referenc git ne hrani v skladišču objektov, temveč posebej v mapi .git/refs. Reference vezane na
posamezen repozitorij in se lahko razlikujejo med različnimi kloni določenega repozitorija.

Veja (angl. branch) je posebne vrste referenca, ki se premika, ko dodajamo nove vnose. Vsakič ko
ustvarimo nov vnos, se trenutno aktivna veja premakne na novo ustvarjeni vnos.

Značka (angl. tag) je referenca, ki je statična in se ne premika več, ko jo enkrat ustvarimo.

6

main

e23d19 3943eb 98ff21 4e96a1

main

v-1.0

Slika 5: Ko ustvarimo nov vnos, se aktivna veja main premakne naprej, značka v-1.0 pa ostane tam, kjer je
bila.

Opomba

Veje in značke nimajo v Gitu nobenega posebnega pomena, razen tega, da so reference na vnose. Pomen

posamenznih vej je stvar dogovora med uporabniki. Tako se pogosto uporablja različne veje za različne

namene: main ali master je navadno glavna veja razvoja, veje z imeni stable, production, development

in podobno označujejo različne stopnje razvoja programske opreme, veje s predpono feature- označujejo

razvoj novih funkcionalnosti.

Vse te pomene damo vejam ljudje, ki sodelujemo v nekem Git repozitoriju. Za Git so vse veje in značke zgolj

preprosti kazalci na določen vnos.

HEAD je posebna referenca, ki kaže na trenutno aktiven vnos. Vnos, na katerega kaže HEAD bo starševski
vnos naslednjeg vnosa, ki ga bomo dodali.

e23d19 3943eb 98ff21 4e96a1

main

HEAD index

Slika 6: HEAD je referenca na trenutno aktiven vnos. Index vsebuje spremembe, ki bodo zabeležene v
naslednjem vnosu.

4.1. Povzetek

Povzemimo sedaj, kaj smo spoznali o podatkovnem modelu Gita. V vsebinsko naslovljivi shrambi hrani Git
posnetke stanja celotne mape, ki ga vodimo v repozitoriju skupaj z metapodatki o spremembah.
Najpomembnejša pojma sta:
• Vnos (angl. commit) je posnetek trenutnega stanja projekta, shranjen kot vozlišče v zgodovinskem

grafu, ki vsebuje posnetek stanja datotek ter metapodatke (avtor, čas, sporočilo).
• zgostitev vnosa (angl. commit hash) je 40-mestna heksadecimalna vrednost, izračunana s SHA-1, ki

enolično identificira vnos na podlagi vsebine posnetka in metapodatkov.

Izven shrambe objektov hrani Git še reference na posamezne vnose. Poznamo dve vrsti referenc:
• Veja (angl. branch) je premična reference, ki kaže na določen vnos v zgodovini in se samodejno

premakne naprej, ko dodajamo nove vnose. Veje omogočajo vzporedne razvojne linije ki so med sabo
neodvisne.

7

• Oznaka (angl. tag) je statična referenca, ki trajno kaže na določen vnos. Za razliko od veje se oznaka,
nikoli ne premika samodejno, zato se uporablja predvsem za označevanje pomembnih točk v zgodovini,
kot so izdaje ali stabilne verzije.

• HEAD je posebna oznaka, ki kaže na trenutno aktiven vnos v delovni kopiji.

Omenimo še dva pojma, ki jih uporabljamo pri delu z Gitom:
• Delovna kopija (angl. workout copy) je mapa v kateri urejamo datoteke, ki jih nato vnesemo v Git. V

delovni kopiji imajo na začetku datoteke isto vsebino kot je vsebina trenutno aktivnega vnosa (HEAD).
Spremembe, ki jih naaredimo na delovni kopiji lahko zabeležimo v nov vnos.

• Oddaljen repozitorij (angl. remote) je povezava(url) na isti repozitorij na drugem
računalniku(ponavadi strežniku), s katerim lahko izmenjujemo vsebino.

Opomba

Gitov podatkovni model omogoča, da je večina operacij v Gitu obrnljivih. To pomeni, da lahko repozitorij

povrnemo v prejšnje stanje. Običajne operacije le dodajajo nove vnose in starih ne brišejo. Prav tako se v

zgodovinsko drevo le dodaja nove povezave in starih se ne briše. Zato daje delo z Gitom uporabniku

samozavest, da brez strahu spreminja vsebino, saj se lahko vedno vrne v času nazaj, kot da bi imel časovni

stroj.

Nekatere operacije pa tudi brišejo vnose (npr. git rebase). Takim operacijam rečemo, da spreminjajo

zgodovino. Uporabniki morajo biti pri uporabi operacij, ki spreminjajo zgodovino posebej pazljivi, da česa

trajno ne zamočijo.

5. Git ukazi kot operacije na grafu

Ko smo opremljeni z razumevanjem podatkovnega modela Gita, razložimo kaj pomenijo posamezne
operacije, ki jih Git omogoča. Ukazov ne bom prevajal, ampak jih bom navedel kot jih pozna program git.

5.1. Checkout

Ukaz

git checkout referenca

spremeni datoteke v delovni kopiji tako, da se ujemajo z vnosom, na katerega kaže referenca. Poleg tega
prestavi oznako HEAD na isti vnos. Če je referenca veja, jo nastavi, kot aktivno vejo. Če je referenca oznaka
ali zgostitev vnosa, priedmo v stanje brez aktivne veje (angl. deteached HEAD).

5.2. Commit

Ukaz

git commit -m "Sporočilo za vnos"

ustvari nov vnos, ki kaže na stanje v čakalnici (angl. staging area ali index). V zgodovinskem grafu ustvari
novo vozlišče, ki je povezano s prejšnjim vnosom. Poleg tega prestavi aktivno vejo in oznako HEAD na novo
ustvarjeni vnos.

5.3. Add

Ukaz

git add bla.txt

8

doda vsebino spremenjene datoteke bla.txt v čakalnico. Ukaz ne spreminja zgodovinskega grafa, pač pa
doda novo vsebino in datotečna drevesa, ki vsebujejo spremembe v shrambo objektov. Vsebina čakalnice
bo zabeležena v naslednjem vnosu.

5.4. Pull

Ukaz

git pull

pobere vsebino(objekte in reference) iz oddaljenega repozitorija in uskladi lokalno vejo z oddaljeno.
Shrambi objektov se preprosto doda nove objekte, ki so v oddaljeni veji. Če je lokalna veja prednik
oddaljene, se lokalna veja enostavno prestavi, da kaže na isti vnos, kot oddaljena veja. V nasprotnem
primeru, mora uporabnik posredovati in razrešiti morebitne konflikte.

5.5. Push

Ukaz

git push

potisne novo vsebino na oddaljeni repozitorij. Push deluje obratno kot pull. Ukaz je uspešno izveden le, če
je oddaljena veja prednica lokalne veje in ni konflikotov.

5.6. Fetch

Ukaz

git fetch

pobere novo vsebino (vnose, veje in oznake) iz oddaljenega repozitorija. Pri tem ne more priti do
konfliktov, ker git preprosto doda nove objekte v shrambo in obstoječih objektov nikakor ne spreminja.
Oddaljenim vejam in oznakam preprosto doda predpono z imenom oddaljenega repozitorija.

6. Reset

Ukaz

git reset referenca

spremeni kam kaže trenutno izbrana veja. Ukaz ne spremeni zgodovinskega drevesa, ampak le to, na kateri
vnos kaže trenutno izbrana veja.

6.1. Merge

Ukaz

git merge referenca

ustvari nov vnos, ki združi dve ločeni veji v eno (trenutno izbrano in referenco). Nov vnos ima dva starša:
vnos na katerega kaže trenutna veja in vnos, na katerega kaže referenca. Če pride do konfliktov, jih mora
uporabnik sam razrešiti, preden se ustvari nov vnos.

6.2. Rebase

Ukaz

git rebase referenca

9

prestavi vnose v trenutno izbrani veji tako, da so potomci vnosa, na katerega kaže referenca. Med ukazi, ki
smo jih spoznali, je ta ukaz edini, ki lahko povzroči izgubo podatkov. Običajno ukazi le dodajajo nove
vnose in prestavljajo reference. Zato je večina ukazov v Gitu varna, v smislu, da jih lahko kasneje
prekličemo in pridemo nazaj na prejšnje stanje. Ukaz rebase pa spremeni zgodovino in ga ne moremo
preklicati, saj trenutne vnose nadomesti z novimi in stare vnose pobriše3.

6.3. Zaključek

Spoznali smo, kako deluje Git in s katere matematičnime pojme uporablja za model. Opis dela z Gitom
presega namen tega dokumenta, zato vas raje usmerim na uradno dokumentacijo:

https://git-scm.com/cheat-sheet

Pri pisanju tega članka sem sevada uporabljal Git. V javno dostopnem repozitoriju [4] si lahko ogledate
celotno zgodovino nastajanja tega članka.

Pri pripravi dokumenta sem uporabil Gemini 3. Vse odgovore sem preveril in uredil po svoje.

Literatura

[1] S. Chacon in B. Straub, „10.2 Git Internals - Git Objects“, Pro Git. Pridobljeno: 3. januar 2026. [Na
spletu]. Dostopno na: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

[2] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, in Y. Markov, „The First Collision for Full SHA-1“, v
Advances in Cryptology – CRYPTO 2017, J. Katz in H. Shacham, Ur., Cham: Springer International
Publishing, 2017, str. 570–596.

[3] D. Brink, „A (probably) exact solution to the Birthday Problem“, The Ramanujan Journal, let. 28, št. 2,
str. 223–238, jun. 2012, doi: 10.1007/s11139-011-9343-9.

[4] M. Vuk, „git-intro“. Pridobljeno: 3. januar 2026. [Na spletu]. Dostopno na: https://git.fri.uni-lj.si/martin.
vuk/git-intro

3Obstaja enostaven način, da tudi rebase lahko prekličemo. Na zadnji vnos, ki ga želimo prestaviti preprosto postavimo
novo referenco(vejo ali oznako). To povzroči, da se stari vnosi ne pobrišejo tudi, ko se izvede ukaz rebase.

10

https://git-scm.com/cheat-sheet
https://git.fri.uni-lj.si/martin.vuk/git-intro
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://doi.org/10.1007/s11139-011-9343-9
https://git.fri.uni-lj.si/martin.vuk/git-intro
https://git.fri.uni-lj.si/martin.vuk/git-intro

	1. Kaj je Git?
	2. Podatkovno skladišče
	2.1. Zgoščevalna funkcija
	2.2. Datotečna drevesa
	2.3. Kolizije zgostitev in rojstnodnevni paradoks

	3. Zgodovinski graf sprememb
	3.1. Posnetki stanja

	4. Kazalci: veje in značke
	4.1. Povzetek

	5. Git ukazi kot operacije na grafu
	5.1. Checkout
	5.2. Commit
	5.3. Add
	5.4. Pull
	5.5. Push
	5.6. Fetch

	6. Reset
	6.1. Merge
	6.2. Rebase
	6.3. Zaključek

	Literatura

