Raziskava preklopa konteksta med operacijskim
sistemom in Go okoljem

Aljaz Brodar

Predmet: Sistemska programska oprema, 2025

Mentor: Tomaz Dobravec

Kazalo

1

Kaj je preklop konteksta?
1.1 Definicija

Preklop konteksta v OS

2.1 Pomnilniska struktura procesa

2.2 Stanje procesao i e e e e e

2.3 Procesni kontrolni blok o000

2.4 Koraki pri preklopu kontekstao
2.4.1 Kaj sprozi preklop konteksta?
2.4.2 Razvrscanje procesov med vrstami cakanja
2.4.3 Izvedbapreklopa

Preklop konteksta v mobilnem okolju

Preklop konteksta v GO

s
4.2 Izvajalno okolje GO
4.3 GO razvrscevalnik

Analiza preklopa konteksta niti v GO

Literatura

w W

—
NO OO0 otd

—_

13
13
14
17

20

25

1 Kaj je preklop konteksta?

1.1 Definicija

Prvi racunalniki so imeli sposobnost izvajanja le enega programa naenkrat. Ta
program je imel popolno kontrolo, nad sistemom in dostop do vseh virov sis-
tema. Na nasprotni strani sodobni racunalniki omogocajo, da se ve¢ programov
nalozi v spomin in izvaja socasno. Ta razvoj je zahteval ve¢jo kontrolo in delitev
programov. Te potrebe so razlog za vpeljavo procesov. Proces je program v iz-
vajanju oz. enota dela v modernih sistemih. Sistem je torej sestavljen iz zbirke
procesov, kjer se le eden naenkrat izvaja na posameznem procesorju. Na primer
procesi operacijskega sistema izvajajo sistemsko kodo in uporabniski procesi iz-
vajajo uporabnisko kodo. Ker si zelimo, da je procesor ¢im bolj produktiven,
moramo procese, ki se na njem izvajajo, izmenjevati med seboj. To naredimo
s tako imenovanim preklopom konteksta. Gre za postopek, ki shrani stanje
procesa z namenom, da bo kasneje obnovljen in nadaljeval z izvajanjem v kas-
nejSem casovnem trenutku. To omogoca vec razlicnim procesom, da si delijo isto
CPE, kar je klju¢no za izvajanje vecopravilnih operacijskih sistemov, kjer se vec¢
opravil izvaja so¢asno v dolo¢enem ¢asovnem obdobju s tako u¢inkovitostjo, da
za ¢lovesko oko ustvari iluzijo vzporednega izvajanja. O vzporednem izvajanju
govorimo, ko izvajamo veC procesov v istem ¢asovnem trenutku, medtem ko
socasno izvajanje omogoca ve¢ procesom, da napredujejo. Torej je mozno imeti
socasnost brez paralelizma. Sledeci sliki prikazujeta ta koncept, kjer je na prvi
prikazana soc¢asnost, na drugi pa vzporednost!.

Ta T4 T Tz Ta Ty

single core

T “

TW‘TZ

time

Slika 1: Socasno izvajanje procesov na enem jedru.

core 1 T4 Ta Ty Ta T e

core 2 To Ta To Ty Ts ven

time

Slika 2: Vzporedno izvajanje procesov na dveh jedrih.

LObenem gre tukaj tudi za soéasno izvajanje na vsakem jedru posebej.

Na ta nac¢in ima lahko obi¢ajen uporabnik ra¢unalnika odprt spletni brskalnik,
urejevalnik besedila in podobne programe hkrati in CPE dodeli za izvajanje
vsakega nekaj mikrosekund casa, preden preklopi na izvajanje drugega pro-
grama, kar na koncu ustvari iluzijo vzporednosti za ¢loveka, ki zazna gibanje v
priblizno 16.7 ms na okvir slike. V tradicionalnem CPE vsak proces uporablja
razne CPE registre, da hrani podatke in vzdrzuje trenutno stanje izvajajocega
se procesa. V veCopravilnem operacijskem sistemu le ta zamenjuje med pro-
cesi 0z. nitmi, z namenom izvajanja ve¢ procesov socasno. Za vsak preklop
mora operacijski sistem shraniti stanje trenutnega procesa, ¢emur sledi nala-
ganje naslednjega, ki bo tekel na CPE. Temu zaporedju korakov, ki shrani stanje
izvajajocega se procesa in nalozi novega, pravimo preklop konteksta.

o Summer of
Monuments

Secure Shfll

image. Layer Colors ol ik

¥l o B o

Slika 3: Moderni operacijski sistemi so sposobni obravnave veéjega Stevila ra-
zliénih procesov ob istem casu.

2 Preklop konteksta v OS

2.1 Pomnilniska struktura procesa

Spomin alociran vsakemu procesu je sestavljen iz ve¢ delov, ki jim obi¢ajno
pravimo segmenti. Ti segmenti so sledeci:

1. Tekstovni segment: vsebuje ukaze programa v strojnem jeziku, ki jih
proces izvaja. Nastavljen je na read-only nacin, zato da proces nena-
menoma ne spremeni svojih ukazov preko nerodne vrednosti kazalca. Ker
ve¢ procesov lahko izvaja isti program, je ta segment deljen oz. preslikan v
virtualni naslovni prostor, ve¢ procesov kot ena sama kopija. 1z tega dela
je tudi razvidno, da je proces ve¢ kot samo programska koda, saj je pro-
gramska koda tekstovni segment, ki je del procesa. Torej gre za pasivno
entiteto napram procesu, ki je aktivna entiteta.

2. Segment inicializiranih podatkov: vsebuje globalne in stati¢ne spre-
menljivke, ki so eksplicitno inicializirane. Vrednosti teh spremenljivk so
prebrane iz izvrsljive datoteke, ko se program nalozi v spomin.

3. Segment neinicializiranih podatkov: vsebuje globalne in stati¢ne spre-
menljivke, ki niso eksplicitno inicializirane. Preden se program zazene, sis-
tem inicializira cel spomin v tem segmentu na 0. Iz zgodovinskih razlogov
se ta segment pogosto imenuje tudi bss segment. Ime izhaja iz starejsega
zbirniskega mnemonika “block started by symbol”. Glavni razlog za locitev
globalnih in stati¢nih spremenljivk, ki so inicializirane od tistih, ki niso,
je, da ko je program shranjen na disku, ni potrebno alocirati prostora
za neinicializirane podatke. Namesto tega izvrsljiva datoteka samo belezi
lokacijo in velikost, potrebno za neinicializirani podatkovni segment, ki se
alocira Sele, ko program nalozimo v izvajalnem casu. Na ta nacin ostane
izvrsljiva datoteka manjse velikosti, kot bi bila sicer npr. ¢e bi imeli veliko
globalno tabelo, ki ni inicializirana nekje v programu.

4. Sklad: je segment, ki dinami¢no spreminja svojo velikost (se 8iri oz. kréi)
in vsebuje skladovna okna (angl. stack frames). Eno okno se alocira
za vsako poklicano funkcijo in hrani njene lokalne spremenljivke t.i. av-
tomatske spremenljivke, argumente in vrnjeno vrednost.

5. Kopica: je del obmocja kjer lahko v ¢asu izvajanja dinamicno alociramo
spomin. Njen vrh se imenuje program-break.

Virtual memory address
(hexadecimal)

/proc/kallsyms
Kernel provides addresses of
(mapped into process <e— kernel symbols in this
virtual memory, but not region (/proc/ksyms in
accessible to program) kernel 2.4 and earlier)
0xC0000000
argo, environ
Stack
. (grows downwards)
Top of
S
stack l
(unallocated memory)
Program N T _______
break
Heap
- (grows upwards)
% — Gend
o)
g Uninitialized data (bss)
= ~— Tedata
= Initialized data
o0 ~— Gelext
'z T, e
& Text (program code)
o 0x08048000
0x00000000

Slika 4: Tipi¢na pomnilniska struktura procesa na Linux/x86-32.

2.2 Stanje procesa

Ko se proces izvaja prehaja med stanji. Stanje procesa je definirano glede na
aktivnost, ki jo izvaja. Proces je lahko v enem izmed petih sledecih stanj:

1. Nov Proces se ustvarja.
2. Izvajan Ukazi se izvajajo.

Cakajo¢ Proces caka na nek dogodek (zakljucek V/I ipd.).

L

Pripravljen Caka, da bo dodeljen CPE.

5. Zakljucen Proces je koncal z izvajanjem.

admitted interrupt exit

terminated

scheduler dispatch

1/O or event completion 1/0 or event wait

Slika 5: Diagram stanja procesa.

Na vsakem CPE se lahko naenkrat izvaja le en proces, ve¢ pa jih je lahko v
pripravljenem stanju ali pa na primer v ¢akajo¢em stanju.
2.3 Procesni kontrolni blok

Vsak proces se v operacijskem sistemu predstavi s procesnim kontrolnim blokom
(angl. process control block). Vsebuje mnogo razli¢nih informacij o specificnem
procesu, ki ga predstavlja, vkljutno s sledec¢imi:

1. Stanje procesa to je lahko nov, izvajan, ¢akajo¢, pripravljen, zakljucen.

2. Programski Stevec kaze na naslov naslednjega ukaza, ki bo izveden in
je del procesa.

3. CPE registri se razlikujejo v Stevilu in tipu. Vkljuc¢ujejo indeksne reg-
istre, statusne, splosnonamenske itd..

4. Informacije za CPE razvrscanje vsebujejo prioriteto procesa in vse
parametre za razvrscanje.

5. Informacije za upravljanje s pomnilnikom vsebujejo vrednosti baznih
registrov in vse kar je relevantno za delo s pomnilnikom.

process state

process number

program counter

registers

memory limits

list of open files

Slika 6: Process control block.

V Linux operacijskem sistemu je PCB predstavljen s C strukturo task_struct, ki
se nahaja v <linuz/sched.h>. Nekatera od teh polj so sledeca:

long state; /* state of the process */

struct sched_entity se; /* scheduling information */

struct task_struct *parent; /* this process’s parent */

struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Vsi aktivni procesi v Linuxu so v jedru predstavljeni z dvojnim povezanim
seznamom task_struct struktur. Jedro vsebuje kazalec current. Ta kaze na
trenutno izvajan proces v sistemu, kot to prikazuje spodnja slika:

R

NN

struct task_struct
process information
.

struct task_struct
process information
.

_/

1

current

struct task_struct
process information
.

LA

(currently executing proccess)

Slika 7: Povezan seznam struktur.

2.4 Koraki pri preklopu konteksta
2.4.1 Kaj sprozi preklop konteksta?

1. Vecopravilnost Razvrscevalni algoritem, ki je del jedra operacijskega sis-
tema, se odlo¢i, kateri proces se bo izvajal v dolo¢enem ¢asu. Obicajno
ima sposobnost zacasne ustavitve izvajajocega se procesa, tega premakne
v vrsto in zazene novega. Tak razvrScevalnik se imenuje razvr§cevalnik
brez prekinjanja (angl. preemptive), obstajajo pa tudi t.i. kooperativni
(angl. non-preemptive) razvrséevalniki, ki procesa v izvajanju nikoli ne
prekinejo in zamenjajo z drugim, ampak procesi sami prostovoljno pre-
pustijo procesor drugim procesom. To obicajno storijo periodi¢no ali pa
ko ugotovijo, da so neaktivni oz. blokirani, ko na primer ¢akajo na V/I
operacijo.

procesi
.
Ld

proces 1

proces 2

proces 3

b
L

procesorski éas

Slika 8: Preklapljanje med tremi procesi, kjer ima drugi razvidno najvisjo pri-
oriteto.

2. Prekinitve Ko CPE v sodobnih arhitekturah zahteva podatke z diska, ne
potrebuje ¢akati in periodi¢no preverjati, ali jih je ze prejel. Ko bodo po-
datki pripravljeni, bo namre¢ prejel prekinitev in bo takrat obdelal svojo
zahtevo s pomocjo programa, ki ga imenujemo prekinitveni rokovalnik.
Ob prekinitvi strojna oprema avtomatsko zamenja del konteksta, in sicer
obicajno vsaj toliko, da se lahko sistem vrne v prekinjeni program. V
veéini primerov se tu menja ¢im manjsi del konteksta z namenom mini-
mizacije skupnega Casa, ki je potreben za obdelavo prekinitve. Pogosto je-
dro za take primere ne ustvari novega, posebnega procesa, ampak se roko-
valnik prekinitve izvede le v delnem kontesktu, ustvarjenem ob zacetku
rokovanja prekinitve.

3. Menjava med uporabniskim prostorom in jedrom Ko sistem preklaplja
med uporabniskim prostorom in jedrom, menjava konteksta ni potrebna,
vendar nekateri operacijski sistemi tudi v taksnih prehodih izvedejo men-
javo konteksta.

2.4.2 Razvrscanje procesov med vrstami ¢akanja

Cilj vecprogramiranja je, da je ves ¢as v izvajanju vsaj en proces, s ¢imer
se doseze vecja izraba procesorja. Cilj casovnega deljenja pa je tako pogosto
preklapljanje procesorja med procesi, da lahko uporabniki interaktivno sodelu-
jejo z vsakim programom. Da to dvoje dosezemo, mora razvrScevalnik izbrati
ustrezen proces za izvajanje na procesorju. Za eno-procesorske sisteme nikoli
ne bo veé kot en izvajan proces. Ce jih je ve¢, bodo preostali morali pocakati,
da bo procesor prost. Ko se procesi ustvarijo, preidejo v vrsto opravil, (angl.
job queue), ki vsebuje vse procese v sistemu. Procesi v glavnem pomnilniku, ki
so pripravljeni na izvajanje, so na seznamu, ki se imenuje ready queue, obicajno
predstavljen kot povezan seznam. Zaglavje tega seznama vsebuje kazalca na
prvi in zadnji PCB v tem seznamu. Sistem obenem vsebuje tudi druge cakalne
vrste. Ko je proces alociran, na CPE se izvede za nekaj ¢asa, je prekinjen, konca
izvajanje ali pa ¢aka na dogodek, kot je npr. koncana obdelava V /I zahtevka.
Recimo, da proces naredi V/I zahtevek za podatke na disku. Ker je na sistemu
ve¢ procesov, je lahko disk zaposlen s serviranjem enega izmed drugih procesov.
Proces bo moral v tem primeru pocakati na disk. Seznam procesov, ki ¢akajo na
posamezno vhodno-izhodno napravo, se imenuje device queue. Vsaka naprava
ima ta seznam.

queue header PCB; PCB,

ready
queue

registers registers

mag
tape : B
unit 0 tail =
mag [head -
tape N PCB, PCB,, PCB,
wnit1 |l =
1 1] J
disk head
unit 0 tail
PCB
termina\| head ‘*_’ =
unit 0 | tail -|/

Slika 9: Ready queue in razni device queue seznami.

Pogosta predstavitev razvrscanja procesov je predstavitev z diagramom vrst.
Na spodnji sliki, vrste predstavimo s pravokotniki. V tem primeru imamo dva
tipa in sicer ready queue na vrhu in mnozico device queue seznamo v spodnjih
vrsticah diagrama. Krogci predstavljajo vire, ki strezejo posamezni vrsti. In
puscice ponazarjajo sam potek pretoka procesov med razlinimi vrstami v sis-
temu. Nov proces se najprej da v ready queue, tam ¢aka dokler ni izvajan ali

10

odstranjen. Ko se enkrat izvaja ima na voljo le tri moznosti, kar je enostavno
razvidno, ¢e si priklicemo zgoraj omenjeni diagram stanj procesa.

: ready queue I CPU
/O queue H /O request |<—

time slice
expired

child forka

execuies child
interrupt wait for an
occurs interrupt

Slika 10: Diagram vrst pri razvrs¢anju procesov.

11

1. Proces lahko ustvari V/I zahtevek in gre v V/I vrsto.
2. Proces lahko ustvari otroski proces in ¢aka, da se le ta konca.

3. Proces je lahko na silo odstranjen s CPE, kot posledica prekinitve in gre
postopoma nazaj v ready queue.

V prvih dveh primerih gre proces v stanje ”¢akajo¢” in potem v ”pripravljen”,
ko hkrati preide v ready queue. Proces ta cikel ponavlja dokler ne zakljuci s
svojim delom. Ko se to zgodi se ga odstrani z vseh vrst in sprosti se njegov
PCB in vse vire povezane z njim.

2.4.3 Izvedba preklopa
Preklop konteksta med procesom PO in P1 lahko strnemo v sledece korake:
1. Proces PO se izvaja in zgodi se prekinitev.

2. Kot odziv operacijski sistem shrani kontekst procesa (PCB) in ustavi iz-
vajanje PO.

3. Operacijski sistem nato nalozi PCB drugega procesa P1 in ga zacne izva-
jati na procesorju.

4. Cez nekaj ¢asa se tudi P1 prekine in postopek se ponovi.

process P, operating system process P,

interrupt or system call

save state into PCB,

executing ﬂ

idle

reload state from PCB,

idle interrupt or system call executing

save state into PCB,

N idle

reload state from PCB,
executing U\—I

Slika 11: Diagram CPE preklopa med procesoma.

12

Cas namenjen preklopu konteksta je povsem rezijski strosek (angl. over-
head), saj operacijski sistem ne opravlja nobenega neposrednega dela za uporab-
nika, ko menjuje med procesi. Tipi¢na hitrost je nekaj mikrosekund in je odvisna
od strojne opreme sistema.

3 Preklop konteksta v mobilnem okolju

Zaradi omejitev na starejsih mobilnih napravah, zgodnje verzije iOS niso omogocale
vecopravilnosti, kar pomeni, da se v ospredju izvaja le ena aplikacija, vse os-
tale so prekinjene. Opravila operacijskega sistema pa so se lahko izvajala
vecopravilno, ker jih je napisal Apple in je lahko zaupal, da se bodo pravilno
obnagala. S prihodom iOS 4 leta 2010, Apple omogoca omejeno ve¢opravilnost
tudi za uporabniske aplikacije, torej aplikacija, ki je v ospredju in s tem tudi
prikazana na zaslonu, se lahko so¢asno izvaja z ve¢ aplikacijami v ozadju. Apple
vecopravilnost najverjetneje omejuje zaradi porabe baterije in pomnilnika mo-
bilne naprave. Android teh omejitev nima. Ce aplikacija zahteva procesiranje,
ko je v ozadju mora uporabiti t.i service, loceno aplikacijsko komponento, ki se
izvaja na strani te aplikacije v ozadju. Na primer aplikacija za predvajanje zvoka
se prestavi v ozadje in service $e vedno nadaljuje s posiljanjem zvoc¢nih datotek
v zvo¢ni gonilnik v imenu te aplikacije. Service nima uporabniskega vmesnika
in pusti majhen odtis na pomnilnik, kar omogoc¢a u¢inkovito vecopravilnost.

4 Preklop konteksta v GO

4.1 Niti

Program je le niz strojnih ukazov, ki jih je treba izvajati zaporedno enega za
drugim. Da bi to omogocil, operacijski sistem uporablja koncept niti. Naloga
niti je, da uposteva in zaporedno izvaja niz ukazov, ki so ji dodeljeni. Izvajanje
se nadaljuje, dokler ni ve¢ ukazov, ki bi jih nit lahko izvedla. Zato nit imenujemo
"pot izvajanja”.

Vsak program, ki ga zazenete, ustvari proces, vsak proces pa dobi zacetno
nit. Niti imajo sposobnost ustvarjanja novih niti. Vse te razlicne niti tecejo
neodvisno druga od druge odlocitve, o razporeditvi pa se sprejemajo na ravni,
niti ne na ravni procesa. Niti lahko tecejo socasno (vsaka po vrsti na posameznem
jedru) ali vzporedno (vsaka tece isto¢asno na razliénih jedrih). Niti tudi ohran-
jajo svoje stanje, da omogocajo varno, lokalno in neodvisno izvajanje svojih
navodil.

Nit sestavlja njen ID programski Stevec, mnozica registrov in pa sklad. Z
drugimi nitmi, ki pripadajo istemu procesu si deli kodno sekcijo (angl. code
section), podatkovno sekcijo (angl. data section) in ostale vire operacijskega
sistema, kot so odprte datoteke in signali. Tradicionalni proces ima na zacetku le
eno nit. Ce jih kasneje ustvari ve¢, lahko opravlja veé kot eno opravilo naenkrati.
Spodnja slika prikazuje razliko med eno nitnim in ve¢nitnim procesom.

13

‘ code | I data | | files ‘ I code | | data l ‘ files ‘
‘ registers | | stack ‘ registers ||| registers ||| registers
stack stack stack
thread —— ; é ; ;-—— thread
single-threaded process multithreaded process

Slika 12: Primerjava procesa z eno nitjo s procesom, ki ima ve¢ niti.

Niti so lahko v treh stanjih:

1. Nit se izvaja na CPE.

2. Nit je izvedljiva.

3. Nit ¢aka (na nek dogodek, npr. V/I).

Hkrati je pri obravnavi preklopa konteksta pomembno razlikovati med CPU-
Bound in I0-Bound nitmi. Pri prvih se nikoli ne zgodi, da bi prisle do tocke,
kjer morajo ¢akati na odgovor na neko zahtevo, torej so vedno v stanju izvajanja.
Edina omejitev na njihovo hitrost izvajanja je torej zmogljivost CPE. Medtem ko
se pri slednji vrsti niti lahko zgodi, da so zacasno ustavljene, recimo zaradi V/I
zahtevka, in ne morejo nadaljevati, dokler se ta ne obdela. Torej se jih prestavi
v cakajoce stanje in posledi¢no se zgodi preklop konteksta, ki jih odstrani z
izvajalne enote.

4.2 Izvajalno okolje GO

GO programi so prevedeni v strojno kodo preko GO prevajalniske infrastrukture.
Ker GO podpira visokonivojske strukture, kot so gorutine, kanali in ¢iScenje
spomina, (angl. garbage collection) potrebuje dodatno programsko opremo t.
i. GO runtime infrastrukturo, da jih podpre. To pomeni, da ko napisemo
GO program se ne izvede povsem samostojno, ampak potrebuje dodatno kodo,
napisano v tem primeru v C. V fazi povezovanja se ta C izvajalna koda zdruzi
direktno z naSim programom in rezultat je ena sama izvedljiva datoteka, ki
vsebuje vse kar potrebuje, da se izvede. Ko izvedemo GO program, operacijski
sistem vidi le samostojen program, ne pa nekaj, kar bi bilo odvisno od zunanjih
knjiznic.

GO program v izvajanju si lahko predstavljamo kot konstrukt, sestavljen
iz dveh plasti: uporabniske kode in izvajalnega okolja (angl. runtime) ki ko-
municirata preko funkcijskih klicev za upravljanje gorutin kanalov in drugih
visjenivojskih abstrakcij.

14

Go Program

memory channel creation of
allocation communication goroutines

Runtime

| \
| \
} \
\
Go Executable| T 1‘ T |
| \
| \
| \
| \
|

fifﬁ fffff Ififi\

syscalls thread creation

0OS Kernel

Slika 13: Struktura GO programa in njegovega izvajalnega okolja.
Vir: [1]

Eden pomembnejsih delov GO runtime je gorutine scheduler. Izvajalno
okolje belezi vsako gorutino in jih razvrsca na niti, ki pripadajo procesu za
izvajanje. Gorutine se razlikujejo od niti in so od njih odvisne, da se sploh
lahko izvedejo. Za visoko ucinkovitost programa je klju¢no izvesti ravno to
razvricevanje pravilno. Ideja Gorutin je, da so sposobne soc¢asnega izvajanja kot
niti, vendar so veliko ”lazje” v primerjavi. Ve¢ niti lahko izvajamo vzporedno,
do meje, ki jo dolo¢i programer v spremenljivki GOMAXPROCS.

Pomembno je, da vse, kar operacijski sistem vidi, je proces, ki zahteva in
izvaja ve¢ niti, medtem ko je koncept razvrs¢anja gorutin na te niti le konstrukt
virtualnega okolja v runtime.

V Go runtime so prisotne tri glavne C strukture, ki pomagajo runtime in
razvrséevalniku: 1) G struktura - predstavlja eno samo GO rutino. Vsebuje
polja za vzdrzevanje njenega sklada in statusa ter reference na kodo za izvajanje
katere je odgovorna.

struct G {
bytex stackguard; // stack guard information
byte* stackbase; // base of stack

byte* stack0; // current stack pointer

byte* entry; // initial function

void* param; // passed parameter on wakeup
int16 status; // status

int32 goid; // unique id

M* lockedm; // used for locking M’s and G’s
};

15

2) M struktura - predstavlja nit operacijskega sistema, kot jo vidi Go run-
time. Med drugim ima polja, kot je kazalec na globalno vrsto Gorutin, kazalec
na trenutno izvajane gorutine ter svoj predpomnilnik.

struct M

{

G* curg; // current running goroutine

int32 id; // unique id

int32 locks ; // locks held by this M

MCache *mcache; // cache for this thread

Gx lockedg; // used for locking M’s and G’s

uintptr createstack [32]; // Stack that created this thread
M* nextwaitm; // next M waiting for lock

};

3) SCHED struktura - gre za globalno strukturo, ki vzdrzuje razli¢ne vrste G
in M struktur in dodatne informacije, ki jih razvrséevalnik potrebuje za pravilno
delovanje. Vsebuje dve vrsti G struktur ena je izvedljiva vrsta, kjer niti lahko
najdejo delo, druga pa prosta vrsta G struktur. Imamo le eno vrsto za M
strukture, ki jih razvr§céevalnik vzdrzuje niti v tej vrsti so neaktivne in ¢akajo
na delo. Da vse te vrste spreminjamo, mora biti Sched lock polje aktivno.

struct Sched {

Lock; // global sched lock .

// must be held to edit G or M queues

G *gfree; // available g’ s (status == Gdead)
G *ghead; // g’ s waiting to run queue

G *gtail; // tail of g’ s waiting to run queue
int32 gwait; // number of g’s waiting to run
int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu
// or in syscall

M *mhead; // m’s waiting for work

int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

};

Runtime se za¢ne z ve¢ Gorutinami. Ena skrbi za ¢is¢enje spomina (angl.
garbage collection), druga razvri¢evanje in tretja predstavlja uporabnikovo Go
kodo. Hkrati je na zacetku dodeljena nit M. Ko program tece, se lahko ustvar-
ijo dodatne gorutine preko uporabnikovega Go programa in ve¢ niti je morda
potrebnih, da izvedemo vse. Na primer, da koda zahteva, da nit blokira, to
se lahko zgodi recimo ¢e poklicemo sistemski klic, potem se nova nit vzame iz

16

vrste neaktivnih niti. To se naredi zato, da zagotovimo, da vse gorutine, ki so
Se vedno izvedljive, nimajo blokiranega izvajanja zaradi pomanjkanja niti.

4.3 GO razvrscevalnik

Ko zazenemo GO program, se za vsako jedro gostiteljevega sistema, dodeli t.i.
logi¢no jedro (ozna¢imo P) 2. Koliko taksnih jeder imamo lahko na Linux op-
eracijskem sistemu preverimo z ukazoma:

$1scpu
$1stopo

Architecture:
CPU op-mode(s):
Address sizes:
Byte Order:
CPU(s):

On-line CPU(s) 1list:

Vendor ID:

Model name:

CPU family:

Model:

Thread(s) per core:
Core(s) per socket:
Socket(s):
Stepping:

CPU(s) scaling MHz:
CPU max MHz:

CPU min MHz:

x86_64
32-bit, 64-bit
39 bits physical, 48 bits virtual
Little Endian
12
0-11
GenuinelIntel
13th Gen Intel(R) Core(TM) i7-1355U
6
186
2
10
1
3
36%
5000,0000
400,0000

Slika 14: Izpis ukaza lscpu.

20V prisotnosti procesorja z veé fiziénimi nitmi na jedro (angl. hyper-threading), bo vsaka
nit Go programu predstavljena kot virtualno jedro.

17

Machine (15GB total)

Package L#0
| NUMANcde LE) PED (15GEB) |
| L3 {12M8) | PC101:00.0
| L2 {1280KB) || L2 {12B0KB) ” L2 {2048KB) ” L2 (2048KB) | Block nvmeOn1
476 GB
| L1d {48KE) | | L1d (4BKB) | | L1d (32KB) || L1d {32KB} || L1d (32KB) || L1d {32KB) || L1d (32KB) || L1d (32KB) | | L1d {32KB) || L1d (32KB) |
0,2 0.2 | PCI02:00.0
| L1i (32KB) | | L1i (32KB) | | L1i {64KE) || L1i (64KBE) || L1i {64KB) || L1i (64KB) || L1i {64KE) || L1i {64KE) || L1i {64KE) || L1i {64KE) |
Net wip2s0
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7 Core L#8 Core L#3
PU LED PU LE2 PU L#4 PU L£5 PU LE6 PU LET PU L#8 PU L#9 PU LE1D PULEN
PED P#2 P#4 PES P#G P#7 P#8 P#9 P#10 PE11
PU LE1 PU LE3
P#1 P#3
Host: brodar

Date: Sun 04 Jan 2026 04:42:39 PM CET

Slika 15: Izpis ukaza lstopo.

Opazimo, da ima obravnavan sistem eno CPE, ki ima deset jeder, kjer imajo
vse razen prvih dveh po eno nit 3. Prvi dve jedri pa imata vsaka po dve niti, kar
tudi pomeni da ima procesor moznost Hyper-Threading *. GO program torej
vidi 12 logi¢nih jeder (P), kar pomeni da se lahko vzporedno izvaja najve¢ 12
niti operacijskega sistema, kjer se vsaka OS nit preslika na fizi¢no nit. To lahko
v GO preverimo z ukazom runtime. NumCPU().

Vsakemu logi¢nemu jedru (P) se dodeli OS nit (oznac¢imo M ®). To nit up-
ravlja operacijski sistem, ki je med drugim odgovoren za njeno preslikavo na
fizi¢no jedro, kjer se bodo njeni ukazi izvajali.

Hkrati se vsakemu GO programu dodeli za¢etno GO rutino (ozna¢imo G),
ki je enota izvajanja GO programa. gorutine si lahko predstavljamo kot niti
na aplikacijskem nivoju, ki so po arhitekturi zelo podobne OS nitim. Tako kot
se za OS niti izvede preklop konteksta na jedru, se za gorutine izvede preklop
konteksta z OS niti (M).

G gredo v vrsto za izvajanje oz. run queue. GO razvrséevalnik lo¢uje dva tipa
teh vrst in sicer Global Run Queue (GRQ) in Local Run Queue (LRQ). Vsakemu
P se dodeli LRQ v katerem so G, ki so dodeljene v to vrsto z namenom, da bodo
na tem P tudi izvedene. Te G se s preklopom konteksta izmenjuje z M, ki je
takrat na P. GRQ vsebuje vse G, ki $e niso bile dodeljene nobenemu P. V.GO
obstaja proces, ki G iz GRQ premika v ustrezne LRQ.

Razvrscevalnike delimo na ve¢ vrst. Za potrebe tega poglavja obravnavamo
dve vrsti in sicer razvrscevalnik s prekinjanjem (angl. preemptive scheduler)
ter sodelovalni razvrscéevalnik (angl. cooperative scheduler). Tipi¢en primer
razvr§cevalnika s prekinjanjem je razvrScevalnik operacijskega sistema. Ta ima
moznost kadarkoli zamenjati trenutno nit na CPE z drugo. Z drugimi besedami

3Tu govorimo o fizi¢nih nitih procesorja, ne o nitih operacijskega sistema.

4Vsaka nit operacijskega sistema ima lasten sklad (stack) v pomnilniku. Fizi¢ne niti pro-
cesorja (hardware threads) nimajo lastnega sklada, temvec zgolj lasten izvajalni kontekst; pri
izvajanju uporabljajo sklad trenutno dodeljene niti operacijskega sistema.

5M kot machine.

18

niti se lahko na silo zaustavi, ¢eprav bi lahko te glede na vsebino programa
lahko nadaljevale s svojim izvajanjem. Obic¢ajno se preklop konteksta izvede ob
poteku ¢asovne rezine ali pa ko ima neka nit vigjo prioriteto. Ce razvricevalnik
sposobnosti da ob poljubnem ¢asu zahteva preklop ne bi imel, kot jo na primer
nima pri sodelovalnem razvricanju ©, potem tvegamo stanje, kjer si med drugim
ena nit lahko povsem prisvoji CPE. Sodelovalni razvrséevalnik, dopusca niti veé
svobode, saj ta lahko tece dokler same ne preda nadzora nad CPE ali dokler
ne zacne blokirati. Oba modela imata svoje prednosti in slabosti. Model s
prekinjanjem deluje bolje, ko imamo kopico programske opreme, ki med seboj ni
povezana, model s sodelovanjem pa, ko se izvajajo programi, ki so bili nac¢rtovani
tako, da med seboj sodelujejo.

GO razvricevalnik je del GO Runtime 7, le ta je vgrajen v aplikacijo. To
pomeni, da se izvaja v uporabniskem prostoru ("nad jedrom”). Pri njem gre
za sodelovalni model razvr$¢anja, vendar kljub temu ima posebnost, da se
navidez obnasa kot model s prekinjanjem. Razvijalec ne more predvideti, kaj
bo GO razvricevalnik naredil, ker to odlocitev opravi GO runtime. Programsko
opremo mora posledi¢no razvijati, tako kot da gre za razvrS¢anje s prekinjanjem.
Razvrscanje se zgodi le ob natan¢no definiranih ”varnih” tockah.

Pri obic¢ajnih programskih jezikih, s katerimi resujemo probleme socasnosti,
bi se vecnitenje zgodilo tako, da bi izvajalno okolje (runtime), razdelilo opravila
na niti in prepustilo vso logiko upravljanja z njimi operacijskem sistemu. Ta
bi se torej odlocil na kaksen nacin se bodo izvedle. Ce so niti JO-Bound, bi
razvrscevalnikovi preklopi konteksta omogo¢ili, da se te niti izvajajo skoraj oz.
navidezno paralelno in potemtakem dobimo velik doprinos k uc¢inkovitosti v
primerjavi z naivnim pristopom, kjer bi jedro postalo neaktivno vsaki¢, ko nit
na njem caka na V/I zahtevek. Po drugi strani, ¢e ima proces ve¢ niti, ki si
delijo isto jedro in so vse te niti CPU-Bound, bi rezultat preklopov konteksta bil
drasticno slabsa uc¢inkovitost procesa. Zato izvajanje veliko izracunov, ki vezani
na CPE socasno obi¢ajno ni dobra ideja.

Glavni kompromis oz. razmerje, ki se nadzira na aplikacijskem nivoju je
med rezijskimi stroski preklopa konteksta ter ¢asom, ko je program razvijalca
neaktiven. Preklop konteksta je najbolj u¢inkovit, ko imamo opravka predvsem
z 10-Bound nitmi. Te naredijo rezijske stroske preklopa konteksta neizogibne
na nivoju operacijskega sistema. Glavno vpraSanje postane, kaj ¢e bi lahko te
stroske omejili na aplikacijskem nivoju? Izvajalno okolje ima ve¢ nadzora nad
nitmi aplikacije, ki ga GO-jev runtime razvrscevalnik v svoj prid tudi uporabi. Z
naprednimi tehnikami 8, doseze, da I0-Bound gorutine razvricéevalniku operaci-
jskega sistema nit na kateri se izvajajo, predstavijo navidez kot CPE-Bound. 7
vidika OS so njegove niti vedno zaposlene z delom, ¢eprav je to delo sestavljeno
iz dela vec¢ih gorutin. Ker je preklop konteksta v GO veliko bolj poceni kot pa v
0S8, je GO runtime uspelo zmanjsati rezijske stroske preklopa konteksta in hkrati

6Sodelovalno razvri¢anje spada v veGjo druzino razvriéanja imenovano razvritanje brez
prekinjanja (angl. non-preemptive scheduling).

"Izvajalno okolje (angl. runtime) je programska oprema zasnovana za podporo pri izvajanju
racunalniskega programa zapisanega v enem izmed programskih jezikov.

8networking pooling, work stealing, ...

19

zagotoviti zelo majhen ¢as, ko je program neaktiven na jedru CPE. Posledi¢no,
GO pridobi na ucinkovitosti na zgoraj omenjenem kompromisu. 7 drugimi
besedami Go runtime prestavi ve¢ino razvrscanja soc¢asnega 1O0-bound dela v
uporabniski prostor, kjer so preklopi med gorutinami cenejsi, s ¢imer zmanjsa
Stevilo dragih preklopov na ravni operacijskega sistema in izboljsa u¢inkovitost
pri visoki socasnosti.

5 Analiza preklopa konteksta niti v GO

Eksperimentalno si lahko pogledamo trajanje konteksta v GO s preprostim pro-
gramom, kjer imamo dve gorutini, ki si med sabo preko skupnega kanala ?,
posiljata gorutine. Ker je kanal v podani programski kodi, ustvarjen s prazno
velikostjo to pomeni, da blokira branje dokler druga gorutina vrednosti ne poslje
v kanal. Obenem blokira pisanje, dokler na drugi strani prejemnik ni pripravljen
na branje. Branje se v GO oznaci z levo usmerjeno puscéico na levi strani kanala
<-ch, pisanje pa z enako usmerjeno puscico na desni strani kanala in vrednostjo,
ki jo v kanal zelimo zapisati ch<-val.

9Kanali v GO so analogni cevovodu, ki povezuje soéasne gorutine.

20

1 package main

2

3 import (

4 n fmt n

5 n os n

6 "runtime"

7 "runtime/trace"

8 "time"

9 debug "runtime/debug"

10)

11

12 func child(c chan string) {

13 for msg := range c {

14 c <- msg

15 }

16 }

17

18 func main() {

19 f, err := os.Create("trace.out")
20 if err != nil {

21 panic (err)

22 }

23 defer f.Close()

24

25 if err := trace.Start(f); err != nil {
26 panic (err)

27 }

28 defer trace.Stop()

29

30 runtime . GOMAXPROCS (1)

31 debug.SetGCPercent (-1)

32

33 ¢ := make(chan string)

34 go child(c)

35

36 const niters = 2000000

37 for i := 0; i < niters; i++ {
38 c <- "test"

39 reply := <-c

40 if len(reply) != 4 {
41 panic("err")
42 }

43 }

44

45 fmt.Println("done")

46 time.Sleep(1l * time.Second)
a7 }

Listing 1: Go example code

V programu imamo dve gorutini in sicer zacetno main.main ter main.child,
kjer slednjo sami ustvarimo z go child(c), medtem, ko je prva avtomatsko ust-
varjena kot zacetna nit procesa. Na zacetku nastavimo, da se vzporedno lahko
izvaja le ena niti. Nato ustvarimo main.child, ki periodi¢no bere iz kanala v
zanki, dokler se le ta ne zapre. Kot zgoraj omenjeno, kanal ob dolo¢enih bral-
nih oz. pisalnih situacijah blokira in takrat se izvede preklop gorutin na M. S

21

pomocjo orodja trace si lahko to natanéneje pogledamo.

v OS THREADS (pid 0)

v Thread 9548

Thread 9550

\ Gl.. - » Glmai. = p Gl.. - » Gl..

Slika 16: Menjava gorutin main.main in main.child na isti niti.

trace | Flow events || Processes || view options e
78000 [0.478190 ns . X . 19478390 s Gare e - -
v STATS (pid 1) X |,
Goroutines: >
0
Heap: @
Threads: g
v OS THREADS (pid 0) XE
v Thread 9548 (ST GL main.main . clomancwd 61 mainmain 1 3
Thread 9550 o
H
9
&
+
AN
el
1item selected. | Siice (1)
Title G1 main.main Event(s) Link
User Friendly other Incoming flow unblock (chan send)
Category Outgoing flow unblock (chan send).
Start 9,478,144 s oytgoing flow unblock (chan send)
Wall Duration 192ns preceding events 71573 events of various types
Start+End Stack Title Following events 385716 events of various types
Trace runtime. 1:161 All 493075 events of various types
main.main:38 events

Slika 17: Trajanje gorutine main.main.

22

wrace [Fiow events || Processes |[view opiions | [-[-]>1=
(7800005 X . . [0.78190 1. . X . [0.478390 1 . [T
v STATS (pid 1) X
Goroutines:

Heap:

Ses 921S i

Threads:

v OS THREADS (pid 0) x

+ Thread 9548 lim St [o Gt |

Thread 9550

SO

weq auweid

« +[x
KouareT induy

e

Il
Zitem selected. | Sice (1)
Title G10 main.child Event(s) Link
User Friendly other Incoming flow unblock (chan send)
Category Outgoing flow unblock (chan send)
Start 94784001 outgoing flow unblock (chan send)
Wall Duration 128ns preceding events 71575 events of various types
Start+End Stack Title Following events 385713 events of various types
Trace runtime. 1:161 Al 493075 events of various types
main.child:14 events
Slika 18: Trajanje gorutine main.child.
| Fiow events | rocesses | view opiors |]|

trace

780000 |o:4781%0 15 | 047839005 [PATB5%0 s 547875005

v STATS (pid 1)
Goroutines:

Heap:
Threads:

v OS THREADS (pid 0)
v Thread 9548

Thread 9550

Slika 19: Trajanje preklopa med main.main in main.child.

Opazimo da se delo main.main izvaja na niti 9548 priblizno 192 ns, medtem
ko main.child okrog 128 ns. Cas med tema dogodkoma pa se porabi za menjavo
teh gorutin in traja priblizno 64 ns. Za primerjavo z Linux OS, z enakim pro-
gramom v C, kjer pride do preklopa niti na nivoju OS, dobimo veliko manjso
prepustnost, preklop tam traja okoli 1.5 us'®, kar je skoraj 24-krat ve¢. Torej
za podano strukturo programa je preklop konteksta niti OS priblizno 24-krat
drazji, kot trajanje preklopa gorutin na OS niti. Za primerjavo, kopiranje 64
KiB na istem rac¢unalniku traja trikrat ve¢ kot omenjen OS preklop konteksta.

10Glej (Bronshtein, 2018).

23

Time {us)

15

10

Context switch Context switch memcpy G4k Thread launch
(pinned) (unpinned)

Slika 20: Trajanje preklopa med main.main in main.child.

24

Process launch

Literatura

. Deshpande, N., Sponsler, E., & Weiss, N. (2011). Analysis of the Go run-
time scheduler. Columbia University, str. 1-3. Dostopno na: https://

Wwww.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_
GO.pdf

. Bronshtein, E. (2018). Measuring context switching and memory over-
heads for Linux threads. Dostopno na: https://eli.thegreenplace.
net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

. Kerrisk, M. (2010). The Linuz Programming Interface: A Linuz and
UNIX System Programming Handbook. San Francisco: No Starch Press.

. Silberschatz, A., Galvin, P. B., & Gagne, G. (1994). Operating System
Concepts (2. izdaja). Reading, MA: Addison-Wesley.

25

https://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
https://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
https://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

	Kaj je preklop konteksta?
	Definicija

	Preklop konteksta v OS
	Pomnilniška struktura procesa
	Stanje procesa
	Procesni kontrolni blok
	Koraki pri preklopu konteksta
	Kaj sproži preklop konteksta?
	Razvrščanje procesov med vrstami čakanja
	Izvedba preklopa

	Preklop konteksta v mobilnem okolju
	Preklop konteksta v GO
	Niti
	Izvajalno okolje GO
	GO razvrščevalnik

	Analiza preklopa konteksta niti v GO
	Literatura

