
Raziskava preklopa konteksta med operacijskim

sistemom in Go okoljem

Aljaž Brodar

Predmet: Sistemska programska oprema, 2025

Mentor: Tomaž Dobravec

1

Kazalo

1 Kaj je preklop konteksta? 3
1.1 Definicija . 3

2 Preklop konteksta v OS 5
2.1 Pomnilnǐska struktura procesa 5
2.2 Stanje procesa . 6
2.3 Procesni kontrolni blok . 7
2.4 Koraki pri preklopu konteksta . 9

2.4.1 Kaj sproži preklop konteksta? 9
2.4.2 Razvrščanje procesov med vrstami čakanja 10
2.4.3 Izvedba preklopa . 12

3 Preklop konteksta v mobilnem okolju 13

4 Preklop konteksta v GO 13
4.1 Niti . 13
4.2 Izvajalno okolje GO . 14
4.3 GO razvrščevalnik . 17

5 Analiza preklopa konteksta niti v GO 20

6 Literatura 25

2

1 Kaj je preklop konteksta?

1.1 Definicija

Prvi računalniki so imeli sposobnost izvajanja le enega programa naenkrat. Ta
program je imel popolno kontrolo, nad sistemom in dostop do vseh virov sis-
tema. Na nasprotni strani sodobni računalniki omogočajo, da se več programov
naloži v spomin in izvaja sočasno. Ta razvoj je zahteval večjo kontrolo in delitev
programov. Te potrebe so razlog za vpeljavo procesov. Proces je program v iz-
vajanju oz. enota dela v modernih sistemih. Sistem je torej sestavljen iz zbirke
procesov, kjer se le eden naenkrat izvaja na posameznem procesorju. Na primer
procesi operacijskega sistema izvajajo sistemsko kodo in uporabnǐski procesi iz-
vajajo uporabnǐsko kodo. Ker si želimo, da je procesor čim bolj produktiven,
moramo procese, ki se na njem izvajajo, izmenjevati med seboj. To naredimo
s tako imenovanim preklopom konteksta. Gre za postopek, ki shrani stanje
procesa z namenom, da bo kasneje obnovljen in nadaljeval z izvajanjem v kas-
neǰsem časovnem trenutku. To omogoča več različnim procesom, da si delijo isto
CPE, kar je ključno za izvajanje večopravilnih operacijskih sistemov, kjer se več
opravil izvaja sočasno v določenem časovnem obdobju s tako učinkovitostjo, da
za človeško oko ustvari iluzijo vzporednega izvajanja. O vzporednem izvajanju
govorimo, ko izvajamo več procesov v istem časovnem trenutku, medtem ko
sočasno izvajanje omogoča več procesom, da napredujejo. Torej je možno imeti
sočasnost brez paralelizma. Sledeči sliki prikazujeta ta koncept, kjer je na prvi
prikazana sočasnost, na drugi pa vzporednost1.

Slika 1: Sočasno izvajanje procesov na enem jedru.

Slika 2: Vzporedno izvajanje procesov na dveh jedrih.

1Obenem gre tukaj tudi za sočasno izvajanje na vsakem jedru posebej.

3

Na ta način ima lahko običajen uporabnik računalnika odprt spletni brskalnik,
urejevalnik besedila in podobne programe hkrati in CPE dodeli za izvajanje
vsakega nekaj mikrosekund časa, preden preklopi na izvajanje drugega pro-
grama, kar na koncu ustvari iluzijo vzporednosti za človeka, ki zazna gibanje v
približno 16.7 ms na okvir slike. V tradicionalnem CPE vsak proces uporablja
razne CPE registre, da hrani podatke in vzdržuje trenutno stanje izvajajočega
se procesa. V večopravilnem operacijskem sistemu le ta zamenjuje med pro-
cesi oz. nitmi, z namenom izvajanja več procesov sočasno. Za vsak preklop
mora operacijski sistem shraniti stanje trenutnega procesa, čemur sledi nala-
ganje naslednjega, ki bo tekel na CPE. Temu zaporedju korakov, ki shrani stanje
izvajajočega se procesa in naloži novega, pravimo preklop konteksta.

Slika 3: Moderni operacijski sistemi so sposobni obravnave večjega števila ra-
zličnih procesov ob istem času.

4

2 Preklop konteksta v OS

2.1 Pomnilnǐska struktura procesa

Spomin alociran vsakemu procesu je sestavljen iz več delov, ki jim običajno
pravimo segmenti. Ti segmenti so sledeči:

1. Tekstovni segment: vsebuje ukaze programa v strojnem jeziku, ki jih
proces izvaja. Nastavljen je na read-only način, zato da proces nena-
menoma ne spremeni svojih ukazov preko nerodne vrednosti kazalca. Ker
več procesov lahko izvaja isti program, je ta segment deljen oz. preslikan v
virtualni naslovni prostor, več procesov kot ena sama kopija. Iz tega dela
je tudi razvidno, da je proces več kot samo programska koda, saj je pro-
gramska koda tekstovni segment, ki je del procesa. Torej gre za pasivno
entiteto napram procesu, ki je aktivna entiteta.

2. Segment inicializiranih podatkov: vsebuje globalne in statične spre-
menljivke, ki so eksplicitno inicializirane. Vrednosti teh spremenljivk so
prebrane iz izvršljive datoteke, ko se program naloži v spomin.

3. Segment neinicializiranih podatkov: vsebuje globalne in statične spre-
menljivke, ki niso eksplicitno inicializirane. Preden se program zažene, sis-
tem inicializira cel spomin v tem segmentu na 0. Iz zgodovinskih razlogov
se ta segment pogosto imenuje tudi bss segment. Ime izhaja iz stareǰsega
zbirnǐskega mnemonika ”block started by symbol”. Glavni razlog za ločitev
globalnih in statičnih spremenljivk, ki so inicializirane od tistih, ki niso,
je, da ko je program shranjen na disku, ni potrebno alocirati prostora
za neinicializirane podatke. Namesto tega izvršljiva datoteka samo beleži
lokacijo in velikost, potrebno za neinicializirani podatkovni segment, ki se
alocira šele, ko program naložimo v izvajalnem času. Na ta način ostane
izvršljiva datoteka manǰse velikosti, kot bi bila sicer npr. če bi imeli veliko
globalno tabelo, ki ni inicializirana nekje v programu.

4. Sklad: je segment, ki dinamično spreminja svojo velikost (se širi oz. krči)
in vsebuje skladovna okna (angl. stack frames). Eno okno se alocira
za vsako poklicano funkcijo in hrani njene lokalne spremenljivke t.i. av-
tomatske spremenljivke, argumente in vrnjeno vrednost.

5. Kopica: je del območja kjer lahko v času izvajanja dinamično alociramo
spomin. Njen vrh se imenuje program-break.

5

Slika 4: Tipična pomnilnǐska struktura procesa na Linux/x86-32.

2.2 Stanje procesa

Ko se proces izvaja prehaja med stanji. Stanje procesa je definirano glede na
aktivnost, ki jo izvaja. Proces je lahko v enem izmed petih sledečih stanj:

1. Nov Proces se ustvarja.

2. Izvajan Ukazi se izvajajo.

3. Čakajoč Proces čaka na nek dogodek (zaključek V/I ipd.).

4. Pripravljen Čaka, da bo dodeljen CPE.

5. Zaključen Proces je končal z izvajanjem.

6

Slika 5: Diagram stanja procesa.

Na vsakem CPE se lahko naenkrat izvaja le en proces, več pa jih je lahko v
pripravljenem stanju ali pa na primer v čakajočem stanju.

2.3 Procesni kontrolni blok

Vsak proces se v operacijskem sistemu predstavi s procesnim kontrolnim blokom
(angl. process control block). Vsebuje mnogo različnih informacij o specifičnem
procesu, ki ga predstavlja, vključno s sledečimi:

1. Stanje procesa to je lahko nov, izvajan, čakajoč, pripravljen, zaključen.

2. Programski števec kaže na naslov naslednjega ukaza, ki bo izveden in
je del procesa.

3. CPE registri se razlikujejo v številu in tipu. Vključujejo indeksne reg-
istre, statusne, splošnonamenske itd..

4. Informacije za CPE razvrščanje vsebujejo prioriteto procesa in vse
parametre za razvrščanje.

5. Informacije za upravljanje s pomnilnikom vsebujejo vrednosti baznih
registrov in vse kar je relevantno za delo s pomnilnikom.

7

Slika 6: Process control block.

V Linux operacijskem sistemu je PCB predstavljen s C strukturo task struct, ki
se nahaja v <linux/sched.h>. Nekatera od teh polj so sledeča:

long state; /* state of the process */

struct sched_entity se; /* scheduling information */

struct task_struct *parent; /* this process’s parent */

struct list_head children; /* this process’s children */

struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Vsi aktivni procesi v Linuxu so v jedru predstavljeni z dvojnim povezanim
seznamom task struct struktur. Jedro vsebuje kazalec current. Ta kaže na
trenutno izvajan proces v sistemu, kot to prikazuje spodnja slika:

Slika 7: Povezan seznam struktur.

8

2.4 Koraki pri preklopu konteksta

2.4.1 Kaj sproži preklop konteksta?

1. Večopravilnost Razvrščevalni algoritem, ki je del jedra operacijskega sis-
tema, se odloči, kateri proces se bo izvajal v določenem času. Običajno
ima sposobnost začasne ustavitve izvajajočega se procesa, tega premakne
v vrsto in zažene novega. Tak razvrščevalnik se imenuje razvrščevalnik
brez prekinjanja (angl. preemptive), obstajajo pa tudi t.i. kooperativni
(angl. non-preemptive) razvrščevalniki, ki procesa v izvajanju nikoli ne
prekinejo in zamenjajo z drugim, ampak procesi sami prostovoljno pre-
pustijo procesor drugim procesom. To običajno storijo periodično ali pa
ko ugotovijo, da so neaktivni oz. blokirani, ko na primer čakajo na V/I
operacijo.

Slika 8: Preklapljanje med tremi procesi, kjer ima drugi razvidno najvǐsjo pri-
oriteto.

2. Prekinitve Ko CPE v sodobnih arhitekturah zahteva podatke z diska, ne
potrebuje čakati in periodično preverjati, ali jih je že prejel. Ko bodo po-
datki pripravljeni, bo namreč prejel prekinitev in bo takrat obdelal svojo
zahtevo s pomočjo programa, ki ga imenujemo prekinitveni rokovalnik.
Ob prekinitvi strojna oprema avtomatsko zamenja del konteksta, in sicer
običajno vsaj toliko, da se lahko sistem vrne v prekinjeni program. V
večini primerov se tu menja čim manǰsi del konteksta z namenom mini-
mizacije skupnega časa, ki je potreben za obdelavo prekinitve. Pogosto je-
dro za take primere ne ustvari novega, posebnega procesa, ampak se roko-
valnik prekinitve izvede le v delnem kontesktu, ustvarjenem ob začetku
rokovanja prekinitve.

3. Menjava med uporabnǐskim prostorom in jedromKo sistem preklaplja
med uporabnǐskim prostorom in jedrom, menjava konteksta ni potrebna,
vendar nekateri operacijski sistemi tudi v takšnih prehodih izvedejo men-
javo konteksta.

9

2.4.2 Razvrščanje procesov med vrstami čakanja

Cilj večprogramiranja je, da je ves čas v izvajanju vsaj en proces, s čimer
se doseže večja izraba procesorja. Cilj časovnega deljenja pa je tako pogosto
preklapljanje procesorja med procesi, da lahko uporabniki interaktivno sodelu-
jejo z vsakim programom. Da to dvoje dosežemo, mora razvrščevalnik izbrati
ustrezen proces za izvajanje na procesorju. Za eno-procesorske sisteme nikoli
ne bo več kot en izvajan proces. Če jih je več, bodo preostali morali počakati,
da bo procesor prost. Ko se procesi ustvarijo, preidejo v vrsto opravil, (angl.
job queue), ki vsebuje vse procese v sistemu. Procesi v glavnem pomnilniku, ki
so pripravljeni na izvajanje, so na seznamu, ki se imenuje ready queue, običajno
predstavljen kot povezan seznam. Zaglavje tega seznama vsebuje kazalca na
prvi in zadnji PCB v tem seznamu. Sistem obenem vsebuje tudi druge čakalne
vrste. Ko je proces alociran, na CPE se izvede za nekaj časa, je prekinjen, konča
izvajanje ali pa čaka na dogodek, kot je npr. končana obdelava V/I zahtevka.
Recimo, da proces naredi V/I zahtevek za podatke na disku. Ker je na sistemu
več procesov, je lahko disk zaposlen s serviranjem enega izmed drugih procesov.
Proces bo moral v tem primeru počakati na disk. Seznam procesov, ki čakajo na
posamezno vhodno-izhodno napravo, se imenuje device queue. Vsaka naprava
ima ta seznam.

Slika 9: Ready queue in razni device queue seznami.

Pogosta predstavitev razvrščanja procesov je predstavitev z diagramom vrst.
Na spodnji sliki, vrste predstavimo s pravokotniki. V tem primeru imamo dva
tipa in sicer ready queue na vrhu in množico device queue seznamo v spodnjih
vrsticah diagrama. Krogci predstavljajo vire, ki strežejo posamezni vrsti. In
puščice ponazarjajo sam potek pretoka procesov med različnimi vrstami v sis-
temu. Nov proces se najprej da v ready queue, tam čaka dokler ni izvajan ali

10

odstranjen. Ko se enkrat izvaja ima na voljo le tri možnosti, kar je enostavno
razvidno, če si prikličemo zgoraj omenjeni diagram stanj procesa.

Slika 10: Diagram vrst pri razvrščanju procesov.

11

1. Proces lahko ustvari V/I zahtevek in gre v V/I vrsto.

2. Proces lahko ustvari otroški proces in čaka, da se le ta konča.

3. Proces je lahko na silo odstranjen s CPE, kot posledica prekinitve in gre
postopoma nazaj v ready queue.

V prvih dveh primerih gre proces v stanje ”čakajoč” in potem v ”pripravljen”,
ko hkrati preide v ready queue. Proces ta cikel ponavlja dokler ne zaključi s
svojim delom. Ko se to zgodi se ga odstrani z vseh vrst in sprosti se njegov
PCB in vse vire povezane z njim.

2.4.3 Izvedba preklopa

Preklop konteksta med procesom P0 in P1 lahko strnemo v sledeče korake:

1. Proces P0 se izvaja in zgodi se prekinitev.

2. Kot odziv operacijski sistem shrani kontekst procesa (PCB) in ustavi iz-
vajanje P0.

3. Operacijski sistem nato naloži PCB drugega procesa P1 in ga začne izva-
jati na procesorju.

4. Čez nekaj časa se tudi P1 prekine in postopek se ponovi.

Slika 11: Diagram CPE preklopa med procesoma.

12

Čas namenjen preklopu konteksta je povsem režijski strošek (angl. over-
head), saj operacijski sistem ne opravlja nobenega neposrednega dela za uporab-
nika, ko menjuje med procesi. Tipična hitrost je nekaj mikrosekund in je odvisna
od strojne opreme sistema.

3 Preklop konteksta v mobilnem okolju

Zaradi omejitev na stareǰsih mobilnih napravah, zgodnje verzije iOS niso omogočale
večopravilnosti, kar pomeni, da se v ospredju izvaja le ena aplikacija, vse os-
tale so prekinjene. Opravila operacijskega sistema pa so se lahko izvajala
večopravilno, ker jih je napisal Apple in je lahko zaupal, da se bodo pravilno
obnašala. S prihodom iOS 4 leta 2010, Apple omogoča omejeno večopravilnost
tudi za uporabnǐske aplikacije, torej aplikacija, ki je v ospredju in s tem tudi
prikazana na zaslonu, se lahko sočasno izvaja z več aplikacijami v ozadju. Apple
večopravilnost najverjetneje omejuje zaradi porabe baterije in pomnilnika mo-
bilne naprave. Android teh omejitev nima. Če aplikacija zahteva procesiranje,
ko je v ozadju mora uporabiti t.i service, ločeno aplikacijsko komponento, ki se
izvaja na strani te aplikacije v ozadju. Na primer aplikacija za predvajanje zvoka
se prestavi v ozadje in service še vedno nadaljuje s pošiljanjem zvočnih datotek
v zvočni gonilnik v imenu te aplikacije. Service nima uporabnǐskega vmesnika
in pusti majhen odtis na pomnilnik, kar omogoča učinkovito večopravilnost.

4 Preklop konteksta v GO

4.1 Niti

Program je le niz strojnih ukazov, ki jih je treba izvajati zaporedno enega za
drugim. Da bi to omogočil, operacijski sistem uporablja koncept niti. Naloga
niti je, da upošteva in zaporedno izvaja niz ukazov, ki so ji dodeljeni. Izvajanje
se nadaljuje, dokler ni več ukazov, ki bi jih nit lahko izvedla. Zato nit imenujemo
”pot izvajanja”.

Vsak program, ki ga zaženete, ustvari proces, vsak proces pa dobi začetno
nit. Niti imajo sposobnost ustvarjanja novih niti. Vse te različne niti tečejo
neodvisno druga od druge odločitve, o razporeditvi pa se sprejemajo na ravni,
niti ne na ravni procesa. Niti lahko tečejo sočasno (vsaka po vrsti na posameznem
jedru) ali vzporedno (vsaka teče istočasno na različnih jedrih). Niti tudi ohran-
jajo svoje stanje, da omogočajo varno, lokalno in neodvisno izvajanje svojih
navodil.

Nit sestavlja njen ID programski števec, množica registrov in pa sklad. Z
drugimi nitmi, ki pripadajo istemu procesu si deli kodno sekcijo (angl. code
section), podatkovno sekcijo (angl. data section) in ostale vire operacijskega
sistema, kot so odprte datoteke in signali. Tradicionalni proces ima na začetku le
eno nit. Če jih kasneje ustvari več, lahko opravlja več kot eno opravilo naenkrati.
Spodnja slika prikazuje razliko med eno nitnim in večnitnim procesom.

13

Slika 12: Primerjava procesa z eno nitjo s procesom, ki ima več niti.

Niti so lahko v treh stanjih:

1. Nit se izvaja na CPE.

2. Nit je izvedljiva.

3. Nit čaka (na nek dogodek, npr. V/I).

Hkrati je pri obravnavi preklopa konteksta pomembno razlikovati med CPU-
Bound in IO-Bound nitmi. Pri prvih se nikoli ne zgodi, da bi prǐsle do točke,
kjer morajo čakati na odgovor na neko zahtevo, torej so vedno v stanju izvajanja.
Edina omejitev na njihovo hitrost izvajanja je torej zmogljivost CPE. Medtem ko
se pri slednji vrsti niti lahko zgodi, da so začasno ustavljene, recimo zaradi V/I
zahtevka, in ne morejo nadaljevati, dokler se ta ne obdela. Torej se jih prestavi
v čakajoče stanje in posledično se zgodi preklop konteksta, ki jih odstrani z
izvajalne enote.

4.2 Izvajalno okolje GO

GO programi so prevedeni v strojno kodo preko GO prevajalnǐske infrastrukture.
Ker GO podpira visokonivojske strukture, kot so gorutine, kanali in čǐsčenje
spomina, (angl. garbage collection) potrebuje dodatno programsko opremo t.
i. GO runtime infrastrukturo, da jih podpre. To pomeni, da ko napǐsemo
GO program se ne izvede povsem samostojno, ampak potrebuje dodatno kodo,
napisano v tem primeru v C. V fazi povezovanja se ta C izvajalna koda združi
direktno z našim programom in rezultat je ena sama izvedljiva datoteka, ki
vsebuje vse kar potrebuje, da se izvede. Ko izvedemo GO program, operacijski
sistem vidi le samostojen program, ne pa nekaj, kar bi bilo odvisno od zunanjih
knjižnic.

GO program v izvajanju si lahko predstavljamo kot konstrukt, sestavljen
iz dveh plasti: uporabnǐske kode in izvajalnega okolja (angl. runtime) ki ko-
municirata preko funkcijskih klicev za upravljanje gorutin kanalov in drugih
vǐsjenivojskih abstrakcij.

14

Slika 13: Struktura GO programa in njegovega izvajalnega okolja.
Vir: [1]

Eden pomembneǰsih delov GO runtime je gorutine scheduler. Izvajalno
okolje beleži vsako gorutino in jih razvršča na niti, ki pripadajo procesu za
izvajanje. Gorutine se razlikujejo od niti in so od njih odvisne, da se sploh
lahko izvedejo. Za visoko učinkovitost programa je ključno izvesti ravno to
razvrščevanje pravilno. Ideja Gorutin je, da so sposobne sočasnega izvajanja kot
niti, vendar so veliko ”lažje” v primerjavi. Več niti lahko izvajamo vzporedno,
do meje, ki jo določi programer v spremenljivki GOMAXPROCS.

Pomembno je, da vse, kar operacijski sistem vidi, je proces, ki zahteva in
izvaja več niti, medtem ko je koncept razvrščanja gorutin na te niti le konstrukt
virtualnega okolja v runtime.

V Go runtime so prisotne tri glavne C strukture, ki pomagajo runtime in
razvrščevalniku: 1) G struktura - predstavlja eno samo GO rutino. Vsebuje
polja za vzdrževanje njenega sklada in statusa ter reference na kodo za izvajanje
katere je odgovorna.

struct G {

byte* stackguard; // stack guard information

byte* stackbase; // base of stack

byte* stack0; // current stack pointer

byte* entry; // initial function

void* param; // passed parameter on wakeup

int16 status; // status

int32 goid; // unique id

M* lockedm; // used for locking M’s and G’s

...

};

15

2) M struktura - predstavlja nit operacijskega sistema, kot jo vidi Go run-
time. Med drugim ima polja, kot je kazalec na globalno vrsto Gorutin, kazalec
na trenutno izvajane gorutine ter svoj predpomnilnik.

struct M

{

G* curg; // current running goroutine

int32 id; // unique id

int32 locks ; // locks held by this M

MCache *mcache; // cache for this thread

G* lockedg; // used for locking M’s and G’s

uintptr createstack [32]; // Stack that created this thread

M* nextwaitm; // next M waiting for lock

...

};

3) SCHED struktura - gre za globalno strukturo, ki vzdržuje različne vrste G
in M struktur in dodatne informacije, ki jih razvrščevalnik potrebuje za pravilno
delovanje. Vsebuje dve vrsti G struktur ena je izvedljiva vrsta, kjer niti lahko
najdejo delo, druga pa prosta vrsta G struktur. Imamo le eno vrsto za M
strukture, ki jih razvrščevalnik vzdržuje niti v tej vrsti so neaktivne in čakajo
na delo. Da vse te vrste spreminjamo, mora biti Sched lock polje aktivno.

struct Sched {

Lock; // global sched lock .

// must be held to edit G or M queues

G *gfree; // available g’ s (status == Gdead)

G *ghead; // g’ s waiting to run queue

G *gtail; // tail of g’ s waiting to run queue

int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive

int32 grunning; // number of g’s running on cpu

// or in syscall

M *mhead; // m’s waiting for work

int32 mwait; // number of m’s waiting for work

int32 mcount; // number of m’s that have been created

...

};

Runtime se začne z več Gorutinami. Ena skrbi za čǐsčenje spomina (angl.
garbage collection), druga razvrščevanje in tretja predstavlja uporabnikovo Go
kodo. Hkrati je na začetku dodeljena nit M. Ko program teče, se lahko ustvar-
ijo dodatne gorutine preko uporabnikovega Go programa in več niti je morda
potrebnih, da izvedemo vse. Na primer, da koda zahteva, da nit blokira, to
se lahko zgodi recimo če pokličemo sistemski klic, potem se nova nit vzame iz

16

vrste neaktivnih niti. To se naredi zato, da zagotovimo, da vse gorutine, ki so
še vedno izvedljive, nimajo blokiranega izvajanja zaradi pomanjkanja niti.

4.3 GO razvrščevalnik

Ko zaženemo GO program, se za vsako jedro gostiteljevega sistema, dodeli t.i.
logično jedro (označimo P) 2. Koliko takšnih jeder imamo lahko na Linux op-
eracijskem sistemu preverimo z ukazoma:

$lscpu

$lstopo

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 39 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 12

On-line CPU(s) list: 0-11

Vendor ID: GenuineIntel

Model name: 13th Gen Intel(R) Core(TM) i7-1355U

CPU family: 6

Model: 186

Thread(s) per core: 2

Core(s) per socket: 10

Socket(s): 1

Stepping: 3

CPU(s) scaling MHz: 36%

CPU max MHz: 5000,0000

CPU min MHz: 400,0000

Slika 14: Izpis ukaza lscpu.

2Ob prisotnosti procesorja z več fizičnimi nitmi na jedro (angl. hyper-threading), bo vsaka
nit Go programu predstavljena kot virtualno jedro.

17

Slika 15: Izpis ukaza lstopo.

Opazimo, da ima obravnavan sistem eno CPE, ki ima deset jeder, kjer imajo
vse razen prvih dveh po eno nit 3. Prvi dve jedri pa imata vsaka po dve niti, kar
tudi pomeni da ima procesor možnost Hyper-Threading 4. GO program torej
vidi 12 logičnih jeder (P), kar pomeni da se lahko vzporedno izvaja največ 12
niti operacijskega sistema, kjer se vsaka OS nit preslika na fizično nit. To lahko
v GO preverimo z ukazom runtime.NumCPU().

Vsakemu logičnemu jedru (P) se dodeli OS nit (označimo M 5). To nit up-
ravlja operacijski sistem, ki je med drugim odgovoren za njeno preslikavo na
fizično jedro, kjer se bodo njeni ukazi izvajali.

Hkrati se vsakemu GO programu dodeli začetno GO rutino (označimo G),
ki je enota izvajanja GO programa. gorutine si lahko predstavljamo kot niti
na aplikacijskem nivoju, ki so po arhitekturi zelo podobne OS nitim. Tako kot
se za OS niti izvede preklop konteksta na jedru, se za gorutine izvede preklop
konteksta z OS niti (M).

G gredo v vrsto za izvajanje oz. run queue. GO razvrščevalnik ločuje dva tipa
teh vrst in sicer Global Run Queue (GRQ) in Local Run Queue (LRQ). Vsakemu
P se dodeli LRQ v katerem so G, ki so dodeljene v to vrsto z namenom, da bodo
na tem P tudi izvedene. Te G se s preklopom konteksta izmenjuje z M, ki je
takrat na P. GRQ vsebuje vse G, ki še niso bile dodeljene nobenemu P. V GO
obstaja proces, ki G iz GRQ premika v ustrezne LRQ.

Razvrščevalnike delimo na več vrst. Za potrebe tega poglavja obravnavamo
dve vrsti in sicer razvrščevalnik s prekinjanjem (angl. preemptive scheduler)
ter sodelovalni razvrščevalnik (angl. cooperative scheduler). Tipičen primer
razvrščevalnika s prekinjanjem je razvrščevalnik operacijskega sistema. Ta ima
možnost kadarkoli zamenjati trenutno nit na CPE z drugo. Z drugimi besedami

3Tu govorimo o fizičnih nitih procesorja, ne o nitih operacijskega sistema.
4Vsaka nit operacijskega sistema ima lasten sklad (stack) v pomnilniku. Fizične niti pro-

cesorja (hardware threads) nimajo lastnega sklada, temveč zgolj lasten izvajalni kontekst; pri
izvajanju uporabljajo sklad trenutno dodeljene niti operacijskega sistema.

5M kot machine.

18

niti se lahko na silo zaustavi, čeprav bi lahko te glede na vsebino programa
lahko nadaljevale s svojim izvajanjem. Običajno se preklop konteksta izvede ob
poteku časovne rezine ali pa ko ima neka nit vǐsjo prioriteto. Če razvrščevalnik
sposobnosti da ob poljubnem času zahteva preklop ne bi imel, kot jo na primer
nima pri sodelovalnem razvrščanju 6, potem tvegamo stanje, kjer si med drugim
ena nit lahko povsem prisvoji CPE. Sodelovalni razvrščevalnik, dopušča niti več
svobode, saj ta lahko teče dokler same ne preda nadzora nad CPE ali dokler
ne začne blokirati. Oba modela imata svoje prednosti in slabosti. Model s
prekinjanjem deluje bolje, ko imamo kopico programske opreme, ki med seboj ni
povezana, model s sodelovanjem pa, ko se izvajajo programi, ki so bili načrtovani
tako, da med seboj sodelujejo.

GO razvrščevalnik je del GO Runtime 7, le ta je vgrajen v aplikacijo. To
pomeni, da se izvaja v uporabnǐskem prostoru (”nad jedrom”). Pri njem gre
za sodelovalni model razvrščanja, vendar kljub temu ima posebnost, da se
navidez obnaša kot model s prekinjanjem. Razvijalec ne more predvideti, kaj
bo GO razvrščevalnik naredil, ker to odločitev opravi GO runtime. Programsko
opremo mora posledično razvijati, tako kot da gre za razvrščanje s prekinjanjem.
Razvrščanje se zgodi le ob natančno definiranih ”varnih” točkah.

Pri običajnih programskih jezikih, s katerimi rešujemo probleme sočasnosti,
bi se večnitenje zgodilo tako, da bi izvajalno okolje (runtime), razdelilo opravila
na niti in prepustilo vso logiko upravljanja z njimi operacijskem sistemu. Ta
bi se torej odločil na kakšen način se bodo izvedle. Če so niti IO-Bound, bi
razvrščevalnikovi preklopi konteksta omogočili, da se te niti izvajajo skoraj oz.
navidezno paralelno in potemtakem dobimo velik doprinos k učinkovitosti v
primerjavi z naivnim pristopom, kjer bi jedro postalo neaktivno vsakič, ko nit
na njem čaka na V/I zahtevek. Po drugi strani, če ima proces več niti, ki si
delijo isto jedro in so vse te niti CPU-Bound, bi rezultat preklopov konteksta bil
drastično slabša učinkovitost procesa. Zato izvajanje veliko izračunov, ki vezani
na CPE sočasno običajno ni dobra ideja.

Glavni kompromis oz. razmerje, ki se nadzira na aplikacijskem nivoju je
med režijskimi stroški preklopa konteksta ter časom, ko je program razvijalca
neaktiven. Preklop konteksta je najbolj učinkovit, ko imamo opravka predvsem
z IO-Bound nitmi. Te naredijo režijske stroške preklopa konteksta neizogibne
na nivoju operacijskega sistema. Glavno vprašanje postane, kaj če bi lahko te
stroške omejili na aplikacijskem nivoju? Izvajalno okolje ima več nadzora nad
nitmi aplikacije, ki ga GO-jev runtime razvrščevalnik v svoj prid tudi uporabi. Z
naprednimi tehnikami 8, doseže, da IO-Bound gorutine razvrščevalniku operaci-
jskega sistema nit na kateri se izvajajo, predstavijo navidez kot CPE-Bound. Z
vidika OS so njegove niti vedno zaposlene z delom, čeprav je to delo sestavljeno
iz dela večih gorutin. Ker je preklop konteksta v GO veliko bolj poceni kot pa v
OS, je GO runtime uspelo zmanǰsati režijske stroške preklopa konteksta in hkrati

6Sodelovalno razvrščanje spada v večjo družino razvrščanja imenovano razvrščanje brez
prekinjanja (angl. non-preemptive scheduling).

7Izvajalno okolje (angl. runtime) je programska oprema zasnovana za podporo pri izvajanju
računalnǐskega programa zapisanega v enem izmed programskih jezikov.

8networking pooling, work stealing, ...

19

zagotoviti zelo majhen čas, ko je program neaktiven na jedru CPE. Posledično,
GO pridobi na učinkovitosti na zgoraj omenjenem kompromisu. Z drugimi
besedami Go runtime prestavi večino razvrščanja sočasnega IO-bound dela v
uporabnǐski prostor, kjer so preklopi med gorutinami ceneǰsi, s čimer zmanǰsa
število dragih preklopov na ravni operacijskega sistema in izbolǰsa učinkovitost
pri visoki sočasnosti.

5 Analiza preklopa konteksta niti v GO

Eksperimentalno si lahko pogledamo trajanje konteksta v GO s preprostim pro-
gramom, kjer imamo dve gorutini, ki si med sabo preko skupnega kanala 9,
pošiljata gorutine. Ker je kanal v podani programski kodi, ustvarjen s prazno
velikostjo to pomeni, da blokira branje dokler druga gorutina vrednosti ne pošlje
v kanal. Obenem blokira pisanje, dokler na drugi strani prejemnik ni pripravljen
na branje. Branje se v GO označi z levo usmerjeno puščico na levi strani kanala
<-ch, pisanje pa z enako usmerjeno puščico na desni strani kanala in vrednostjo,
ki jo v kanal želimo zapisati ch<-val.

9Kanali v GO so analogni cevovodu, ki povezuje sočasne gorutine.

20

1 package main

2

3 import (

4 "fmt"

5 "os"

6 "runtime"

7 "runtime/trace"

8 "time"

9 debug "runtime/debug"

10)

11

12 func child(c chan string) {

13 for msg := range c {

14 c <- msg

15 }

16 }

17

18 func main() {

19 f, err := os.Create("trace.out")

20 if err != nil {

21 panic(err)

22 }

23 defer f.Close()

24

25 if err := trace.Start(f); err != nil {

26 panic(err)

27 }

28 defer trace.Stop()

29

30 runtime.GOMAXPROCS (1)

31 debug.SetGCPercent (-1)

32

33 c := make(chan string)

34 go child(c)

35

36 const niters = 2000000

37 for i := 0; i < niters; i++ {

38 c <- "test"

39 reply := <-c

40 if len(reply) != 4 {

41 panic("err")

42 }

43 }

44

45 fmt.Println("done")

46 time.Sleep(1 * time.Second)

47 }

Listing 1: Go example code

V programu imamo dve gorutini in sicer začetno main.main ter main.child,
kjer slednjo sami ustvarimo z go child(c), medtem, ko je prva avtomatsko ust-
varjena kot začetna nit procesa. Na začetku nastavimo, da se vzporedno lahko
izvaja le ena niti. Nato ustvarimo main.child, ki periodično bere iz kanala v
zanki, dokler se le ta ne zapre. Kot zgoraj omenjeno, kanal ob določenih bral-
nih oz. pisalnih situacijah blokira in takrat se izvede preklop gorutin na M. S

21

pomočjo orodja trace si lahko to natančneje pogledamo.

Slika 16: Menjava gorutin main.main in main.child na isti niti.

Slika 17: Trajanje gorutine main.main.

22

Slika 18: Trajanje gorutine main.child.

Slika 19: Trajanje preklopa med main.main in main.child.

Opazimo da se delo main.main izvaja na niti 9548 približno 192 ns, medtem
ko main.child okrog 128 ns. Čas med tema dogodkoma pa se porabi za menjavo
teh gorutin in traja približno 64 ns. Za primerjavo z Linux OS, z enakim pro-
gramom v C, kjer pride do preklopa niti na nivoju OS, dobimo veliko manǰso
prepustnost, preklop tam traja okoli 1.5 µs10, kar je skoraj 24-krat več. Torej
za podano strukturo programa je preklop konteksta niti OS približno 24-krat
dražji, kot trajanje preklopa gorutin na OS niti. Za primerjavo, kopiranje 64
KiB na istem računalniku traja trikrat več kot omenjen OS preklop konteksta.

10Glej (Bronshtein, 2018).

23

Slika 20: Trajanje preklopa med main.main in main.child.

24

6 Literatura

1. Deshpande, N., Sponsler, E., & Weiss, N. (2011). Analysis of the Go run-
time scheduler. Columbia University, str. 1–3. Dostopno na: https://

www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_

GO.pdf

2. Bronshtein, E. (2018). Measuring context switching and memory over-
heads for Linux threads. Dostopno na: https://eli.thegreenplace.

net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

3. Kerrisk, M. (2010). The Linux Programming Interface: A Linux and
UNIX System Programming Handbook. San Francisco: No Starch Press.

4. Silberschatz, A., Galvin, P. B., & Gagne, G. (1994). Operating System
Concepts (2. izdaja). Reading, MA: Addison-Wesley.

25

https://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
https://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
https://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

	Kaj je preklop konteksta?
	Definicija

	Preklop konteksta v OS
	Pomnilniška struktura procesa
	Stanje procesa
	Procesni kontrolni blok
	Koraki pri preklopu konteksta
	Kaj sproži preklop konteksta?
	Razvrščanje procesov med vrstami čakanja
	Izvedba preklopa

	Preklop konteksta v mobilnem okolju
	Preklop konteksta v GO
	Niti
	Izvajalno okolje GO
	GO razvrščevalnik

	Analiza preklopa konteksta niti v GO
	Literatura

